prown $\quad 0014-74-01 \quad 498.2 .50 h 6 / 8$
Nutrition Assistance Program Report Series
The Office of Analysis, Nutrition and Evaluation

Special Nutrition Programs

Report No. CN-01-SNDAIIFR

School Nutrition Dietary Assessment Study-II

Final Report

Non-Dtecrimination Polley
The U.a. Seperiment ci Aglouiture (USDA) prohibits disciminetion in all its programs and activiles on the basis of race, color, national origin, gondor, rifigion, age, disability, pollucal bollefts, seaveit orientation,
 should cortact USDA's TARCET Conter at (202) 720-2000 (voloe and 700)'

To the a complaint of decrinination, vitte UsDA, Dirsctor, Ombe of Civi Rohts, Room $320-$ W, whin
 and TDD). USDA is an equal opportunity provider and employer.

School Nutrition Dietary Assessment Study-II Final Report

Authors:
Mary Kay Fox
Mary Kay Crepinsek
Patty Connor
Michael Battaglia

Submitted by:

Abt Associates, Inc. 55 Wheeler Street Cambridge, MA 02138

Project Director: Mary Kay Fox

Submitted to:
Office of Analysis, Nutrition and Evaluation
USDA, Food and Nutrition Service
3101 Park Center Drive
Alexandria, VA 22302-15í
Project Officer: Patricia McKinney

This study was conducted under Contract number 53-3198-05-032 with the Food and Nutrition Service.
This report is available on the Food and Nutrition Service web site: http://www.fns.usda.gov/oane.

Suggested Citation:

U.S. Department of Agriculture, Food and Nutrition Service, Office of Analysis, Nutrition and Evaluation, School Nutrition Dietary Asssessment Study-II Final Report. Mary Kay Fox, Mary Kay Crepinsek, Patty Connor, Michael Battaglia. Project Officer, Patricia McKinney. Alexandria, VA: 2001.
II

Table of Contents

List of Exhibits vi
Acknowledgments xiii
Chapter One: Introduction 1
The National School Lunch and School Brealfast Programs 1
Nutrition Standards for School Meals 2
The School Meals Initiative for Healthy Children 3
Current Menu Planning Options 4
Weighted and Unweighted Nutrient Analyses (Meals as Served versus Meals as Offered) 5
Overview of the SNDA-II Study 6
Respondents and Data Collection Instruments 7
Standards Used to Evaluate Nutrient Content 9
Comparison with SNDA-I Data 10
Organization of this Report 11
Chapter Two: Characteristics of Food Service Programs in Public NSLP Schools 13
School-Level Participation in the SBP 13
Percentage of Students Approved for Meal Benefits 13
Participation in the NSLP and SBP 15
Distribution of Free, Reduced-Price and Paid Meals 15
Meal Prices 19
NSLP Meal Prices 19
Relationship Between Meal Price and Participation Rates Among Full-Price Students 22
SBP Meal Prices 25
Menu Planning Practicas 25
Responsibility for Menu Planning 25
Availability and Use of Menu Planning Resources 27
Menu Planning Options Selected by Schools 27
Nutrient Analysis Procedures in Schools Using NSMP and ANSMP 34
Incorporating the Dietary Guidelines for Americans into School Meals and Perceived Effects on Acceptability and Food Waste 37
Breakfast Menus 44
Types of Meal Service Offered 44
Breakfast Menus 48
Alternatives to NSLP and SBP Meals 48
Options Other than USDA-Reimbursable Meals 50
Foods Offered a la Carte 50
Average Weekly a la Carte Revenue 55
Pricing Methods Used for la Carte Foods 55
Use of Foods from Commercial Vendors 59
Use of Food Service Management Companies 59

Table of Contents (continued)

Chapter Three: Characteristics of Lunches Served in Public NSLP Schools 65
Overview of the Analysis 65
Number and Types of Food Offered and Served to Students 66
Number of Options Offered Within NSLP Meal Component Categories 66
Foods Most Frequently Included in NSLP Merus 69
Characteristics of Lunches Actually Served to Students 74
Average Nutrient Content of Lunches Served to Students 74
Mean Nutrient Content Relative to RDAs 76
Percentage of Calories from Total Fat and Saturated Fat 79
Cholesterol, Sodium and Carbohydrate Content 79
Average Nutrient Content of Lunches Served to Students, by Menu Planning Method 83
Characteristics of Low-Fat and Higher-Fat Lunches 85
Average Nutrient Content of Lunches by Relative Fat Content 87
Foods Most Commonly Offered 87
Sources of Calories and Nutrients in NSLP Lunches as Served 92
Calories 97
Carbohydrate 97
Total Fat 97
Saturated Fat 97
Sodium 97
Cholesterol 98
Vitamin A 98
Vitamin C 98
Calcium 98
Iron 98
Chapter Four: Characteristics of Brealfasts Served in Public SBP Schools 99
Number and Types of Food Offered and Served to Students 99
Number of Options Offered Within SBP Meal Component Categories 99
Foods Most Frequently Included in SBP Menus 102
Characteristics of Breakfasts Actually Served to Students 105
Average Nutrient Content of Breakfasts Served to Students 106
Mean Nutrient Content Relative to RDAs 108
Percentage of Calories from Total Fat and Saturated Fat 111
Cholesterol, Sodium and Carbohydrate Content 111
Average Nutrient Content of Breakfasts Served to Students, by Menu Plaming Method 115
Characteristics of Low-Fat and Higher-Fat Breakfasts 118
Average Nutrient Content 119
Foods Most Commonly Offered 119

Table of Contents (continued)

Chapter Four (continued):
Sources of Calories and Nutrients in SBP Breakfasts as Selected 123
Calories 123
Carbohydrate 123
Total Fat 123
Saturated Fat 128
Sodium 128
Cholesterol 128
Vitamin A 128
Vitamin C 128
Calcium 128
Iron 128
Chapter Five: Comparison of Weighted and Unweighted Nutrient Analyses 129
School Lunches 130
Mean Nutrient Content Relative to RDAs 130
Mean Percentage of Calories from Total Fat and Saturated Fat 132
Cholesterol, Sodium and Carbohydrate Content 132
Percentage of Schools That Met Nutrient Standards and
Recommendations 132
Factors Influencing Estimates of Relative Fat Content 136
School Breakfasts 139
Mean Nutrient Content Relative to RDAs 139
Percentage of Calories from Total Fat and Saturated Fat 139
Cholesterol, Sodium and Carbohydrate Content 142
Percentage of Schools That Met Nutrient Standards and Recommendations 142
Factors Influencing Estimates of Relative Fat Content 146
Chapter Six: Changes in Nutrient Content of School Meals Offered Since SY 1991-92 147
Overview of the Analysis 147
Average Nutrient Content of Lunches Offered in Public Schools: SY 1998-99 and SY 1991-92 148
Mean Calorie and Nutrient Content Relative to Minimum Nutrition
Standards 149
Percentage of Calories from Total Fat and Saturated Fat 149
Cholesterol, Sodium and Carbohydrate Content 152
Distribution of Fat, Carbohydrate, Cholesterol and Sodium Content 155

Table of Contents
 (continued)

Chapter Six (continued):

Availability and Nutrient Content of Low-Fat Lunch Options 155
Availability of Low-Fat Lunch Options 158
Mean Nutrient Content of Low-Fat Lunch Options 158
Average Nutrient Content of Breakfasts Offered in Public Schools: SY 1998-99 and SY 1991-92 163
Mean Calorie and Nutrient Content Relative to Minimum Nutrition Standards 163
Percentage of Calories from Total Fat and Saturated Fat 165
Cholesterol, Sodium and Carbohydrate Content 165
References 171
Appendix A Supplementary Exhibits: Nutrient Content of NSLP Lunches A-1
Appendix B Supplementary Exhibits: Nutrient Content of SBP Brealfasts B-1
Appendix Ctudy Implementation C-1
Data Collection Schedule and Instruments C-1
Telephone Interview of SFA Directors C-1
Mail Survey of Cafeteria Managers C-2
Procedures Used to Implement the Menu Survey C-4
Sample Data Collection Instruments
SFA Director Interview
Everyday Reimbursable Foods Form
Daily Menu Form
Recipe Form
Nutrition Information FormDaily Meal Counts FormA la Carte Foods Checklist
Meal Service Questionnaire
Appendix D Sample Design and Calculation of Sample Weights D-1
Sample Design D-1
Sample Recruitment D-2
Completion Rates for Data Collection Components D-2
Development of Sample Weights D-6
SFA Weight D-6
School-Level Weights D-6
School Reclassifications D-7

Table of Contents (continued)

Appendix E Determining Nutrient Content of School Meals E-1
Review and Processing of Completed Menu Surveys E-1
Entering Data into the Computerized Nutrient Analysis System E-1
Entry Procedures E-2
Quality Control Procedures E-8
Computing the Average Nutrient Content of School Meals E-9
Weighted Nutrient Analysis E-10
Unweighted Nutrient Analysis E-11
Food Group Codes E-14

List of Exhibits

Exhibit 1.1 Nutrition Standards Defined in Current NSLP and SBP Regulations 3
Exhibit 1.2 Nutrition Standards Used in Evaluating School Meals 10
Exhibit 1.3 Minimum Nutrition Standards Defined in Current NSLP and SBP Regulations 12
Exhibit 2.1 Types of Breakfast Programs Offered by Public NSLP Schools 14
Exhibit 2.2 Approval for NSLP and SBP Meal Benefits 16
Exhibit 2.3 Student Participation in the NSLP and SBP During the Target Week 17
Exhibit 2.4 Distribution of Free, Reduced-Price and Full-Price Meals During the Target Week 18
Exhibit 2.5 Methods Used to Set Prices for USDA-Reimbursable Meals 20
Exhibit 2.6 Average Prices for Reduced-Price and Full-Price Lunches 21
Exhibit 2.7 Use of Multiple Prices for Full-Price Lunches 23
Exhibit 2.8 Relationship Between Meal Price and Student Participation Rates for Full-Price Lunches 24
Exhibit 2.9 SBP Meal Prices 26
Exhibit 2.10 Responsibility for Menu Planning 28
Exhibit 2.11 Availability and Use of Menu Planning Resources 29
Exhibit 2.12 Menu Planning Options Used for NSLP Menus 31
Exhibit 2.13 Menu Planning Options by Selected School Characteristics 32
Exhibit 2.14 Menu Analysis Procedures Adopted by Schools Using NSMP or ANSMP 35
Exhibit 2.15 Grade/Age Groupings Used by NSMP and ANSMP Schools in Conducting Nutrient Analyses 38
Exhibit 2.16 Percentage of Schools Reporting Changes in Lunch Menus to Incorporate the Dietary Guidelines for Americans and Perceived Effect on Meal Acceptability 41
Exhibit 2.17 Percentage of Schools Reporting Changes in Lunch Menus to Incorporate the Dietary Guidelines for Americans, by Menu Planning Option, and Perceived Effect on Meal Acceptability 42
Exhibit 2.18 Perceived Effect of Changes in Lunch Menus on Levels of Food Waste 43
Exhibit 2.19 Percentage of Schools Reporting Changes in Breakfast Menus to Incorporate the Dietary Guidelines for Americans and Perceived Effect on Meal Acceptability 45
Exhibit 2.20 Perceived Effect of Changes in Breakfast Menus on Levels of Food Waste 46
Exhibit 2.21 Types of Meal Service Offered at Lunch 47
Exhibit 2.22 Types of Meal Service Available at Breakfast 49
Exhibit 2.23 Non-USDA Food Options Available During School Hours 51
Exhibit 2.24 Availability of a la Carte Food Items at Breakfast and/or Lunch 52
Exhibit 2.25 Average a la Carte Sales by Selected School Characteristics 56
Exhibit 2.26 NSLP Student Participation Rate and Weekly a la Carte Sales 57
Exhibit 2.27 Methods Used to Set Prices for a la Carte Foods 58
Exhibit 2.28 Use of Foods from Commercial Vendors 60
Exhibit 2.29 Division of Responsibility in SFAs that Use Food Service Management Companies' 61

List of Exhibits
 (continued)

Exhibit 3.1 Choice and Variety in Lunch Menus 67
Exhibit 3.2 Foods Most Commonly Offered in Lunch Menus 70
Exhibit 3.3 Characteristics of Lumches Served to Students 75
Exhibit 3.4 Lunches Served to Students in SY 1998-99 Provided More than One-Third of the RDA, with the Exception of Calories in Secondary Schools 77
Exhibit 3.5 Percentage of Schools in Which the Average Lunch Served to Students Provided One-Third or More of the RDA 78
Exhibit 3.6 Lunches Served to Students in SY 1998-99 Did Not Meet NSLP Standards for Calories from Fat and Saturated Fat 80
Exhibit 3.7 Distribution of the Percentage of Calories from Total Fat, Saturated Fat and Carbohydrate in Average Lunches Served to Students 81
Exhibit 3.8 Lunches Served to Students Met the NRC Recommendation for Cholesterol but Did Not Meet Recommendations for Sodium or Calories from Carbohydrate 82
Exhibit 3.9 Mean Nutrient Profile of Lunches Served, by Menu Planning System, Compared to Nutrition Standards for NSLP Lunches and NRC Recommendations: Elementary Schools 84
Exhibit 3.10 Mean Nutrient Profile of Lunches Served, by Menu Planning System, Compared to Nutrition Standards for NSLP Lunches and NRC Recommendations: Secondary Schools 86
Exhibit 3.11 In Comparison to Higher-Fat Lunches, Low-Fat Lunches Provided Comparable Amounts of Calories and Key Nutrients 88
Exhibit 3.12 Schools that Served Low-Fat Lunches Tended to Offer Certain Foods More Often than Schools that Served the Highest-Fat Lunches 89
Exhibit 3.13 Sources of Caloriss and Nutrients in NSLP Lunches as Served 93
Exhibit 4.1 Choice and Variety in Breakfast Menus 100
Exhibit 4.2 Foods Most Commonly Offered in Breakfast Menus 103
Exhibit 4.3 Characteristics of Breakfasts Served to Students 107
Exhibit 4.4 Breakfasts Served to Students in SY 1998-99 Provided at Least One-Fourth of the RDA, with the Exception of Calories 109
Exhibit 4.5 Percentage of Schools in Which the Average Breakfast Served to Students Provided One-Fourth or More of the RDA 110
Exhibit 4.6 Breakfasts Served to Students in SY 1998-99 Met the SBP Standard for Calories from Fat and Almost Met the Standard for Calories from Saturated Fat 112
Exhibit 4.7 Distribution of the Percentage of Calories from Total Fat, Saturated Fat, and Carbohydrate in Average Breakfasts Served to Students 113
Exhibit 4.8 Breakfasts Served to Students Met NRC Recommendations for Cholesterol and Calories from Carbohydrate but Did Not Consistently Meet the Recommendation for Sodium 114

List of Exhibits (continued)

Exhibit 4.9 Mean Nutrient Profile of Breakfasts Served, By Menu Planning System, Compared to Nutrition Standards for SBP Breakfasts and NRC Recommendations: Elementary Schools 116
Exhibit 4.10 Mean Nutrient Profile of Breakfasts Served, By Menu Planning System, Compared to Nutrition Standards for SBP Breakfasts and NRC Recommendations: Secondary Schools 117
Exhibit 4.11 Compared to Higher-Fat Breakfasts, Low-Fat Brealfasts Provided Comparable Amounts of Calories and Key Nutrients 120
Exhibit 4.12 Schools That Served Low-Fat Breakfasts Tended to Offer Certain Foods More Often than Schools That Served Higher-Fat Breakfasts 121
Exhibit 4.13 Sources of Calories and Nutrients in SBP Breakfasts as Served 124
Exhibit 5.1 Estimates of Calorie and Nutrient Content of the Average Lunch Were Different for Weighted and Unweighted Analyses but Conclusions About the One-Third RDA Standard Were Similar 131
Exhibit 5.2 Estimates of the Percentage of Calories from Fat and Saturated Fat in Lunches Were Similar for Weighted and Unweighted Analyses 133
Exhibit 5.3 Estimates of Cholesterol and Sodium Content Were Different for Weighted and Unweighted Analyses but Conclusions About Whether Lunches Met NRC Recommendations Were Identical 134
Exhibit $5.4 \quad$ Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch Based on Weighted and Unweighted Analyses: Elementary Schools 135
Exhibit 5.5 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lumch Based on Weighted and Unweighted Analyses: Secondary Schools 137
Exhibit 5.6 Estimates of Calorie and Nutrient Content of the Average Breakfast Were Different for Weighted and Unweighted Analyses but Conclusions About the One-Fourth RDA Standard Were Similar 140
Exhibit 5.7 Estimates of the Percentage of Calories from Fat and Saturated Fat in Breakfasts Were Similar for Weighted and Unweighted Analyses 141
Exhibit 5.8 Estimates of Cholesterol and Sodium Content Were Different for Weighted and Unweighted Analyses but Conclusions About Whether Breakfasts Met NRC Recommendations Were Generally Similar 143
Exhibit 5.9 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealfast Based on Weighted and Unweighted Analyses: Elementary Schools 144
Exhibit 5.10 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealfast Based on Weighted and Unweighted Analyses: Secondary Schools 145

List of Exhibits (continued)

Exhibit 6.1 Mean Calorie and Nutrient Content of Lunches Offered in SY 1991-92 and SY 1998-99 Compared to Current NSLP Standards 150
Exhibit 6.2 Between SY 1991-92 and SY 1998-99 There Was a Significant Trend Toward Lower Levels of Fat and Saturated Fat in School Lunches, as Offered 151
Exhibit 6.3 For Lumches as Offered, the Percentage of Schools That Met Standards for Total Fat and Saturated Fat Has Increased Substantially Since SY 1991-92 153
Exhibit 6.4 Lunches Offered in SY 1998-99 Were Significantly Lower in Cholesterol and Sodium and Higher in Calories from Carbohydrate than Lunches Offered in SY 1991-92 154
Exhibit 6.5 Distribution of Fat, Carbohydrate, Cholesterol and Sodium in Lunches Offered in SY 1991-92 and SY 1998-99: Elementary Schools 156
Exhibit 6.6 Distribution of Fat, Carbohydrate, Cholesterol and Sodium in Lunches Offered in SY 1991-92 and SY 1998-99: Secondary Schools 157
Exhibit 6.7 Distribution of Fat, Carbohydrate, Cholesterol and Sodium in Lowest-Percent-Fat Lunches Offered in SY 1991-92 and SY 1998-99: Elementary Schools 159
Exhibit 6.8 Distribution of Fat, Carbohydrate, Cholesterol and Sodium in Lowest-Percent-Fat Lunches Offered in SY 1991-92 and SY 1998-99: Secondary Schools 160
Exhibit 6.9 Mean Nutrient Profile of Lowest-Percent-Fat Lunches Offered in SY 1991-92 and SY 1998-99 Compared to Minimum NSLP Standards and NRC Recommendations: Elementary Schools 161
Exhibit 6.10 Mean Nutrient Profile of Lowest-Percent-Fat Lunches Offered in SY 1991-92 and SY 1998-99 Compared to Minimum NSLP Standards and NRC Recommendations: Secondary Schools 162
Exhibit 6.11 Mean Calorie and Nutrient Content of Breakfasts Offered in SY 1991-92 and SY 1998-99 Compared to Current SBP Standards 164
Exhibit 6.12 Between SY 1991-92 and SY 1998-99 There Was a Significant Decrease in the Relative Fat and Saturated Fat Content of School Breakfasts, as Offered 166
Exhibit 6.13 For Breakfasts as Offered, the Percentage of Schools That Met Standards for Total Fat and Saturated Fat Has Increased Substantially Since SY 1991-92 167
Exhibit 6.14 Breakfasts Offered in SY 1998-99 Were Significantly Lower in Cholesterol and Sodium and Higher in Calories from Carbohydrate than Breakfasts Offered in SY 1991-92 168
Exhibit A. 1 Mean Calorie and Nutrient Content of Average Lumches Served to Students in SY 1998-99 A-1
Exhibit A. 2 Mean Percentage of Recommended Dietary Allowances Provided in Average Lunches Served to Students in SY 1998-99 A-2
Exhibit A. 3 Percentage of Schools in Which the Average Lunch Served to Students Met the Minimum Nutrition Standards Defined in Current NSLP Regulations A-3

List of Exhibits
 (continued)

Exhibit A. 4 Distribution of Cholesterol and Sodium in Average Lunches Served to Students in SY 1998-99 A-4
Exhibit A. 5 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System: Elementary Schools A-5
Exhibit A. 6 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Memu Planning System: Secondary Schools A-6
Exhibit A. 7 Mean Nutrient Profile of Average Lumches Served in SY 1998-99, by Menu Planning System, Compared to NSLP Standerds and NRC Recommendations: All Schools A-7
Exhibit A. 8 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System: All Schools A-8
Exhibit A. 9 Mean Nutrient Profile of Average Lunches Served in SY 1998-99, by Menu Planning System, Compared to NSLP Standards and NRC Recommendations: Middle Schools A-9
Exhibit A. 10 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System: Middle Schools A-10
Exhibit A. 11 Mean Nutrient Profile of Average Lunches Served in SY 1998-99, by Meau Planning System, Compared to NSLP Standards and NRC Recommendations: High Schools A-11
Exhibit A. 12 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System: High Schools A-12
Exhibit A. 13 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lumch, by Relative Fat Content of Average Lunch Served A-13
Exhibit A. 14 Mean Nutrient and Calorie Content of Lunches, Using Alternative Methodology for Unweighted Analysis: Elementary Schools A-14
Exhibit A. 15 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendation for Lunch Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis: Elementary Schools A-15
Exhibit A. 16 Mean Nutrient and Calorie Content of Lunches, Using Alternative Methodology for Unweighted Analysis: Secondary Schools A-16
Exchibit A. 17 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendation for Lunch Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis: Secondary Schoo's A-17
Exhibit B. 1 Mean Calorie and Nutrieat Content of Average Breakfasts Served to Students in SY 1998-99 B-1
Exhibit B. 2 Mean Percentage of Recommended Dietary Allowances in Average Breakfasts Served to Students in SY 1998-99 B-2

List of Exhibits
 (continued)

Exhibit B. 3 Percentage of Schools in Which the Average Breakfast Served to Students Met the Nutrition Standards Defined in Current SBP Regulations B-3
Exhibit B. 4 Distribution of Cholesterol and Sodium in Average Breakfasts Served to Students in SY 1998-99 B-4
Exhibit B. 5 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System: Elementary Schools B-5
Exhibit B. 6 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System: Secondary Schools B-6
Exhibit B. 7 Mean Nutrient Profile of the Average Breakfast Served, by Menu Planning System, Compared to SBP Standards and NRC Recommendations: All Schools B-7
Exhibit B. 8 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System: All Schools B-8
Exhibit B. 9 Mean Nutrient Profile of the Average Breakfast Served, by Menu Planning System, Compared to SBP Standards and NRC Recommendations: Middle Schools B-9
Exhibit B. 10 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System: Middle Schools B-10
Erchibit B. 11 Mean Nutrient Profile of the Average Breakfast Served, by Menu Planning System, Compared to SBP Standards and NRC Recommendations: High Schools B-11
Exhibit B. 12 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System: High Schools B-12
Exhibit B. 13 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Relative Fat Content of Breakfasts Served B-13
Exhibit B. 14 Mean Nutrient and Calorie Content of Breakfasts Using Alternative Methodology for Unweighted Analysis: Elementary Schools B-14
Exhibit B. 15 Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealfast Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis: Elementary Schools B-15
Exhibit B. 16 Mean Nutrient and Calorie Content of Breakfasts Using Altermative Methodology for Unweighted Analysis: Secondary Schools B-16
Exhibit B. 17 Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Breakfast Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis: Secondary Schools B-17
Exhibit D. 1 SFA and School-Level Cooperation at the Time of Recruitment D-3
Exhibit D. 2 Completion Rate for the SFA Director Interview Among Cooperating SFAs D-4
Exhibit D. 3 Completion Rate for the School-Level Data Component of the SFA Director Interview Among Cooperating Schools D-4

List of Exhibits (continued)

Exhibit D. 4 Completion Rate for the Menu Survey Among Cooperating Schools D-5
Exhibit D. 5 Completion Rate for the Meal Service Questiomnaire and A la Carte Checklist Among Cooperating Schools D-5
Exhibit E. 1 Default Portion Sizes for Foods Items Not Included in Salad Bars or Other Self-Serve Food Bars, Lunch Menus E-3
Exhibit E. 2 Default Portion Sizes for Food Items Not Included in Salad Bars or Other Self-Serve Food Bars, Breakfast Menus E-4
Exhibit E. 3 Default Portion Sizes for Accompaniments E-5
Exhibit E. 4 Coding Rules for Salad Bars E-7
Exhibit E. 5 Comparison of Assumptions for Weighted and Unweighted Nutrient Anslyses E-13
Exhibit E. 6 Major and Minor Food Groups E-15

Acknowledgments

The second School Nutrition Dietary Assessment Study (SNDA-II) is indebted to school food service professionals in the 430 School Food Authorities (SFAs) and more than 1,000 schools who participated in the study. Without their cooperation and hard work, the study could not have been completed.

Staff at the Office of Analysis, Nutrition and Evaluation, Food and Nutrition Service, U.S. Department of Agriculture provided oversight for the stvily. Three different Project Officers were izvolved. Marie Mitchell oversaw the initial start-up phases, including sampling, instrument development, and pretesting. John Endahl assumed responsibility for the project during recruitment and data collection as well as through much of the data processing phase. Patricia McKinney provided oversight and guidance during the final stages of data processing and while the data were being analyzed. Pat also guided development of the study's final report.

Several staff members at Abt Associates played important roles on the project. Mary Kay Fox served as Project Director. Other key Abt staff include Patty Comnor and Mary Kay Crepinsek (senior nutritionists and analysts), Diane Green (survey director), Lisa Litin (senior analyst/programmer), Nancy Burstein (technical reviewer), Michael Battaglia (sampling statistician), Melissa Giamanco, Ellen Janay, Brandi Szegda, and Margaret Loeper (senior nutrition coders), and Eileen Fahey (contrsct secretary).

Finally, staff at LunchByte Systems, Inc., particularly Paul Moriarity and Lisa Plescia, worked tirelessly to adapt the NUTRIKIDS software to meet the demands of this study. This was no minor undertaking and Paul and Lisa were unfailingly pleasant and responsive in dealing with the many challenges and complications encountered along the way.

Chapter One Introduction

The National School Lumch Program (NSLP), administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA), has been providing meals to the Nation's school children since 1946. The School Breakfast Program (SBP) has been in full operation since the early 1970s. Over the years, research has shown that meals offered in both the NSLP and SBP have provided children with the calories, vitamins, and minerals needed to sustain health and promote normal growth. However, in the early 1990s, the first School Nutrition Dietary Assessment Stucy (SNDA-I) found that the amount of fat, saturated fat, and sodium provided in school lunches was not consistent with current public health recommendations.

Since the time the SNDA-I study revealed that school lunches were not consistent with the Dietary Guidelines, FNS and its State and local partners in the school meals programs have been working on many fronts to address this problem. These efforts have included changes in menu planning requirements, enhanced training and technical assistance for school food service managers and personnel, and changes in the types and amounts of commodity foode offered to schools. In school year (SY) 1998-99, FNS sponsored the second School Nutrition Dietary Assessment Study (SNDA-II) to provide an updated picture of the nutrient profile of NSLP and SBP meals. The study also provides current information about menu planning practices used in the school meals programs and about related program operations issues. The SNDA-II study was completed by Abt Associates Inc. under contract to FNS. This report summarizes study findings.

The National School Lunch and School Breakfast Programs

Abstract

The National School Lunch Act of 1946 established the NSLP "to safeguard the health and well-being of the Nation's children and to encourage the domestic consumption of mutritious agricultural commodities and other foods" (P.L. 79-396). All public and private nonprofit schools are eligible to participate in both the NSLP and the SBP, as are public or licensed residential child care institutions. Currently, the NSLP operates in more than 84,000 public schools and 12,000 private nonprofit schools and residential child care institutions (USDA, FNS 2000).

Any child in a participating school is eligible to obtain a school lunch. Students from low-income families are eligible to purchase lunch at a reduced price or to receive a free lunch. In SY 1998-99, more than 4.5 billion school lunches were served (USDA, FNF; 2000). On an average day, more than 27 million children received an NSLP lunch; more than half of these lunches were provided free or at a reduced price to children from low-income families.

The SBP began in the mid-1960s when the Child Nutrition Act of 1966 (P.L. 89-642) established a pilot project to support the provision of breakfast to children living in "poor areas and areas where children [had] to travel a great distance to school." The SBP was officially authorized as a permanent program in

1975, and the target population was expanded to include "all schools where [the program] is needed to provide adequate nutrition for all children in attendance" (P.L. 94-105).

Currently, the SBP operates in approximately three-quarters of the public schools that offer the NSLP, most commonly in schools that serve large numbers of economically disadvantaged children. In SY 1998-99, more than 1.2 billion brealcfasts were served (USDA, FNS 2000). On any given day, roughly seven million children received an SBP breakfast. More than three-quarters of these meals were provided free of charge.

School Food Authorities (SFAs) that participate in the NSLP and SBP receive two types of Federal assistance: donated commodities (tied to the NSLP) and cash reimbursements (received for both the NSLP and SBP). Entitlement to commodities is based on an establishod per-meal flat rate applied to the mumber of reimbursable lunches served the previous year. Subject to availability, SFAs are also eligible to receive bonus commodities in amounts that can be used without waste. The type and amount of bonus commodities available vary from year to year depending on purchasing decisions made by USDA.

Cash reimbursements for NSLP and SBP meals are based on the number of meals served to students, established per-meal reimbursement rates, and the poverty level of participating students. SFAs receive a base payment for each meal served, with substantially higher rates paid for meals served free or at a reduced price to income-eligible students. Schools may receive additional reimbursements if more than 60 percent of the meals they serve are provided free or at a reduced price. Children's houschold size and income determine eligibility for free and reduced-price meal benefits. Currently, students eligible for free meals are those from families with incomes at or below 130 percent of poverty. Students from families with incomes between 130 and 185 percent of poverty are eligible for reduced-price meals. These students may be required to contribute an additional amount of their own money for school meals, but Federal regulations set a maximum price ($\mathbf{\$ 0 . 4 0}$ for humch and $\mathbf{\$ 0 . 3 0}$ for brealcast in SY 1998-99) that is well below the rate paid by students who are not eligible for reduced-price meal benefits.

Nutrition Standards for School Meals

To be eligible for Federal subsidies, meals served in the NSLP and SBP must meet defined nutrition standards. For many years, the goal of the NSLP has been to provide approximately one-third of children's daily nutritional needs, as defined by the Recommended Dietary Allowances (RDAs) (National Research Council 1989b). To ensure that this gool is met, NSLP regulations have always inchuded food-based menu planning guidelines. These guidelines, originally known as the "Type A meal pattern," define specific types of food that must be included in plamned meals as well as minimum acceptable portion sizes. Specific mutrition standards for SBP breakfasts were defined only recently, although program regulations have always included a meal pattern. The meal pattern was designed to ensure that brealfasts would provide approximately 20 to 25 percent of children's daily nutritional needs.

Most prior research has shown that, with few exceptions, the NSLP and SBP have been successful in meeting these mutrition goals (Wellisch 1983; St. Pierre 1992; and Burghardt 1993). However, the most recent nationally representative study of school meals - the first School Nutrition Dietary Assessment Study (SNDA-I), which was published in 1993 - focused attention on another aspect of nutritional quality (Burghardt 1993). SNDA-I found that, in SY 1991-92, NSLP meals were not consistent with goals for fat and saturated fat intake specified in the Dietary Guidelines for Americans (U.S. Depart-
ments of Health and Human Services and Agriculture 1990). ${ }^{1}$ At the time the SNDA-I study was conducted, schools were not required to offer meals that were consistent with the Dietary Guidelines.

The School Meals Initiative for Healthy Children

Shortly after SNDA-I revealed that school lunches were not consistent with the Dietary Guidelines for fat and saturated fat intake, USDA began developing an initiative to address this problem. A series of public hearings was held and interested parties were invited to submit written comments. In 1995, the Department launched the School Meals Initiative for Healthy Children (SMI). SMI is designed to improve the nutritional quality of school meals by providing schools with educational and technical resources that can be used to assist food service personnel in preparing nutritious and appealing meals and to encourage children to eat more healthfiul meals.

Key components of SMI include new nutrition standards for school meals and added flexibility in the procedures used to plan and monitor school menus. The new mutrition standards maintain the longstanding goals of providing, on average, one-third of students' daily mutrition needs at lunch and onefourth at brealfast. In addition, the standards include goals for fat and saturated fat content that are consistent with Dietary Guidelines recommendations (Exhibit 1.1).

Exhibit 1.1
Nutrition Standards Defined in Current NSLP and SBP Regulations

Nutrient	Standard
Calories and nutrients with established Recommended Dietary Allowances (RDAs): ${ }^{1}$	
Calories, protein, vitamin A, vitamin C, calcium and iron	Brealdast: One-fourth of the RDA Lanch: One-third of the RDA
Nutrients included in the Dietary Guidelines for Americans:2	
	Brealdast and Lunch:
Total fat	$\leq 30 \%$ of total calories
Saturated fat	< 10% of total calories
1 National Research Council (1989). Recommended Dietary Allowances, 10th edition. Washington, DC: National Acendemy Prese.	
2 U.S. Departments of Heelth and Humen Servisu Guideliness for Americans, 3rd edition. Wast the 1990 version of the Dietary Guidelines].	iculture (1990). Nurition and Your Healhh: Dietary U.S. Government Printing Office. [Stunderds are besed on

[^0]The initial SMI proposal, issued in June 1994, replaced the traditional food-based menu planning guidelines (meal pattern) with an alternative computer-based menu planning system known as Nutrient Standard Menu Planning (NSMP') or Assisted Nutrient Standard Menu Planning (ANSMP). The proposal also required that school meals be consistent with the Dietary Guidelines no later than the beginning of SY 1998-99. An extended time line was built into the proposed regulation because comments received during public hearings and in response to an initial Federal Register notice indicated that some SFAs would need a considerable amount of time to implement NSMP or ANSMP and to develop menus consistent with the Dietary Guidelines.

In November 1994, as part of the reauthorization of the Child Nutrition programs, Congress enscted The Healthy Meals for Healthy Americans Act (P.L. 103-448). This law was important for two reasons. First, it was the first time that legislation required that school meals be consistent with the Dietary Guidelines. Second, the law precipitated two important changes in USDA's initial SMI proposal. It required that USDA develop a food-based menu planning system, similar to the traditional meal patterm, that schools could use in lieu of NSMP or ANSMP. The law also shortened the time line for incorporating the Dietary Guidelines, requiring that all SFAs be in compliance by the first day of SY 1996-97 (two years earlier than USDA had suggested), unless a waiver was granted by the cognizant State agency. Finally, the law permitted schools, under certain circumstances, to no longer offer whole milk (prior to this legislation, schools were required to offer whole milk).

Menu planning options were further expanded in May 1996, when The Healthy Meals for Children Act mandated that USDA allow SFAs to continue to use the traditional NSLP and SBP menu planning systems (i.e., the meal patterns that were in effect prior to the SMI rule), or to use "any reasonable approach" in planning memus that satisfy the nutrient standards defined under SMI.

The regulatory requirement that school meals be consistent with the Dietary Guidelines has been incorporated into FNS' strategic plan. The curreat goal is that all schools will satisfy these standards by 2005.

Current Menu Planning Options

As summarized in the preceding discussion, current program regulations provide schools with five different menu planning options: (1) the traditional food-based memu planning system; (2) an enhanced food-based menu planning system; (3) NSMP; (4) ANSMP; and (5) any other reasonable approsch.

The traditional food-based menu planning system requires that lunches offered to students include five food items: fluid milk (as a beverage), one serving of meat or meat alternate, a minimum of one serving of a bread or grain product, and two servings of fruit and/or vegetables. The system also defines minimum required portion sizes for children in different grades. The enhanced food-based menu planning system is very similar to the traditional food-based system but requires more servings of bread and grain products over the course of a week and larger servings of fruits and vegetables.

NSMP and ANSMP require use of a computerized nutrient analysis system to plan menus. SFAs must select one of several USDA-approved NSMP software programs. ANSMP allows SFAs to arrange or contract for NSMP implementation (i.e., menu development and nutrient analysis) through an exiernal source such as a State agency, a consortium of SFAs, or a consultant. The only food-based menu
planning requirements imposed under NSMP or ANSMP, for lunch, are that milk be offered as a beverage and that at least one entree and one side dish be offered. Within these broad guidelines, menu plamners are free to use whatever portions and combinations of food they wish to meet the nutrition standards. Thus, in theory, NSMP and ANSMP provide more flexibility in menu planning than the two food-based systems while, at the same time, providing a greater degree of assurance that meals served to students meet nutrition standards.

Finally, schools may use any other reasonable approach to menu planning, which may inchude specific modifications to the food-based menu planning guidelines (outlined in program regulations) as well as more major modifications to any of the available menu planning systems. State agencies may establish guidelines for using a modified approach to menu planning and may require that SFAs receive prior approval before implementing such a system.

SFAs that elect to use either of the food-based systems (the traditional food-based menu planning system or the enhanced food-based system defined in the final SMI rule) or an altemative approsch to menu plamning are not required to analyze the mutrient content of planned menus. They are, however, expected to meet the nutrition standards defined under SMI. All school districts must undergo a mandatory SMI review every five years. As part of this process, State agency staff must analyze a representative weeldy meau and compare results of the analysis to the nutrition standards.

Weighted and Unweighted Nutrient Analyses (Meals as Served versus Meals as Offered)

Current NSLP and SBP memu planning requirements and monitoring standards are built around use of a weighted nutrient analysis of meals served over the course of a week. ${ }^{2}$ A weighted nutrient analysis incorporates information about student selection patterns and does not assume that every student takes one serving of every type of food offered. In the analysis, greater weight is given to the foods that are served/selected more frequently. This approach provides a picture of the average meal served to or selected by students. The nutrient analysis software systems approved by FNS for use in implementing NSMP or ANSMP (or for use by States in monitoring SFAs using other memu planning options) perform weighted nutrient analyses. To complete an analysis, users must specify not only the types of foods offered and the associated portion sizes, but the total number of reimbursable meals served and the number of servings of each food served in those meals.

In contrast, an unweighted mutrient analysis does not consider the relative frequency with which different types of food are served/selected. The analysis constitutes a simple average of all foods offered. An unweighted nutrient analysis provides a picture of the average meal offered to students. The principal difference between the two analytic approaches is that a weighted analysis reflects student choices, a factor which school food service programs may influence but can not control.

Prior to SMI, assessments of the nutrient content of school meals were typically based on an unweighted analysis. The SNDA-I study used an unweighted nutrient analysis. In this study, both weighted and unweighted analyses were conducted. To permit comparisons between the SNDA-I and SNDA-II

[^1]studies, the methodology used in this study for the unweighted annalysis was modeled after the approach used in SNDA-I.

Overview of the SNDA-II Study

The primary goal of the SNDA-II study was to provide information on how schools are progressing, in the early stages of SML, toward meeting SMI standards. The study also provides current information about menu planning practices used in school food service programs and about related program operations issues.

The study produced national crose-sectional estimates of the nutrient composition of USDA meals served in elementary and secondary schools in SY 1998-99. The study focused exclusively on public schools, which account for roughly 90 percent of all institutional NSLP participants. The study design included separate nationally representative probability samples of public SFAs, public elementary schools, public middle schools, and public high schools participating in the NSLP. Study results are generalizable to public SFAs and public schools nationwide but not to the entire NSLP. For ease of presentation, the umrestricted terms "school" and "SFA" are used throughout this report in exchibit titles and most text discussions. Chapter titles and selected section titles, exhibit footnotes and discussions remind the reader that the study focused on public schools.

FNS defined nine research objectives for the SNDA-II study:

- Determine the average mutrient composition of USDA meals currently served to sudents during a typical school week in elementary and secondary schools.
- Determine whether the average nutrient composition of meals differs depending on the menu plamning option used.
- Determine the current availability and nutrient content of low-fat meals (meals that provide no more than 30 percent of calories from fatt.
- Determine the major food sources of calories and key nutrients in brealdfast and lunch meals.
- Examine the number of food choices offered to students participating in the NSLP and/or SBP on a darily basis.
- Examine the variety of foods offered in NSLP hunches and SBP brealfasts and identify foods that are offered most frequently.
- Determine the type of alternative food sources available to students who do not eat the NSLP lunch or SBP brealfast or bring food from home, and the types of food offered through these channels.
- Determine the changes in the nutrient composition of NSLP and SBP meals since SY 1991-92, when the SNDA-I study was conducted.
- Determine whether conclusions about the nutrient composition of school meals differs depending on whether the nutrient analysis is weighted or unweighted.

The data collection approach specified by FNS was a mail survey of cafeteria managers and a telephone survey of SFA directors. The mail survey of cafeteria managers was the primary data collection vehicle and is the source of most of the data included in this report. The telephone survey of SFA directors provided supplementary information on district characteristics and selected school-level characteristics (c.g, earollment, number of students approved for free and reduced-price meals, and menu planning practices).

The following paragraphs provide a brief overview of the study's design and data collection approach. Appendix D provides detailed information on the design of the study sample, recruitment of SFAs and schools, data collection activities and the final disposition of the various samples.

Respondents and Data Collection Instruments

Data were collected from cafeteria managers in sampled schools (or other respondents designated by SFA directors) and from SFA directors. Cafeteria managers were asked to complete a written menu survey that provided information on the foods offered to students as well as the mumber of servings of each food that was actually served to students. Cafeteria managers also provided information on local school food service operations, including the availability of a la carte foods and other non-USDA meal options. SFA directors were interviewed by telephone and provided information on menu planning practices, enrollment, numbers of students approved for free and rechuced-price meals and district-level food service operations.

A total of 1,075 cafeteria managers completed the memu survey and 430 SFA directors completed the telephone interview. Response rates among cafeteria managers and SFA cirectors who agreed to participate in the study were 87.8 percent for the menu survey and 90.1 percent for the SFA director interview. Detriiled information on sample design, response rates and calculation of sample weights is provided in Appendix D.

Mail Swrvey of Cafeteria Managers

Cafeteria managers were asked to complete a memu survey which requested detailed information on all foods offired during a specified five-day period (referred to as the targat week). ${ }^{3}$ Target weeks were initilly spread between late September and mid-December 1998. However, because some schools were unable to complete the survey during that time period, data collection was extended through May 1999 for schools that needed additional time. All respondents provided data for lunches served during a single week. Respondents whose schools participated in the SBP were also asked to provide information for brealfasts served during the same week.

[^2]Respondents were asked to list all reimbursable menu items offered and to provide a complete description of each item, including manufacturer and brand names and, where available, product codes. For items not included in the mutrient data base used in the analysis, respondents were asked to provide labels, summaries of product nutrition information and/or manufacturers' names and addresses. Complete recipes were requested for all items that were prepared by combining two or more foods or ingredients.

In addition to item descriptions and recipes, respondents were asiced to describe the pertions served inchucing, if applicable, different portions for different grade/age groups. Finally, respondents were asked to report, for each menu item, the total number of portions served in reimbursable meals (i.e., exclusive of portions sold a la carte and portions sold to teachers or other adults).

Because SNDA-II data were to be compared to data from SNDA-I, every effort was made to make the data collection approach as comparable as possiole to the approach used in SNDA-I. With the exception of meal production information (i.e., information on the number of portions served), the data elements collected in the two studies were identical. The format of menu survey materials was enhanced, however, to address difficulties encountered during SNDA-I. ${ }^{4}$ The menu survey was presented in an easy-to-use booklet format with a separate section for each day of the week and separate sections for breakfist and lunch. Respondents also received 3 user-friendly instruction manual and several supporting response aids that offered guidance on describing foods and providing food package labels. Survey materials were designed with colored paper, colored ink, tabs and laminution so that materials were attractive, organized and easy to understand. In addition to response aids, a toll-free technical assistance number was provided and respondents were encouraged to call with any questions.

Survey materials were mailed to respondents at least two weeks prior to the start of the target week. SFA directors were encouraged to bring all school-level respondents together to review materials, plan for the data collection and avoid unnecessary duplication of effort. Each cafeteria manager received at least two follow-up contacts - one the week before the target week and one early in the target week - to ensure receipt and completion of survey materials and to provide technical assistance as needed.

In addition to the memu survey, respondents were asked to complete three other brief instruments, all of which were bound into the same data collection booklet as the menu survey and were addressed in the accompanying instruction manual. These instruments included:

- Daily Meal Counts Form: A form used to record the number of reimbursable meals served each day during the target week, by reimbursement category (free, reduced-price, paid).
- Meal Service Questionnaire: A brief survey that obtrined information about local school food service operations, including prices charged for reduced- and full-price meals, types of meal service offered (e.g., hot meals, salad bars, etc.) and availability of vending machines and other altemative sources of food.

[^3]- A la Carte Foods Checklist: A simple checklist of items potentially cffered on an a la carte basis. Respondents were asked to complete the checklist one day (randomly assigned) during the target week. The form used was provided by FNS and was identical to the one used in SNDA-I.

Because scme respondents completed only the menu survey or only some of these additional instruments, the number of respondents for each instrument varied and response rates were somewhat lower than for the menu survey (see Appendix D).

Telephome Interview of SFA Dinectors

SFA directors were interviewed by telephone between September 1998 and March 1999. A few directors who proved to be extremely difficult to resch completed the interview by mail during the summer or fall of 1999. The interview took approximately 20 minutes to complete and collected information for sampled schools in the SFA as well as for the district as a whole. Topics covered for the sampled schools included enrollment, number of students approved for free and reduced-price meals, menu planning practices, access to and use of a computer for nutrient analysis, use of USDA technical assistance materials, and use of foods from commerciai vendors (e.g., McDonald's, Taco Bell, Pizza Hut and others). Topics addressed at the district level included use of food service management companies (FSMCs) and food purchasing cooperatives and methods used to set prices for reimbursable meals and a la carte foods.

Standards Used to Evaluate Nutrient Contant

Two sets of standards were used to evaluate the mutrient content of NSLP and SBP meais (Exchibit 1.2). The first set is comprised of SMI nutrition standards, as defined in current NSLP and SBP regulations. These include standards for calories and target nutrients for which RDAs have been established (protein, vitamin A, vitamin C, calcium, and iron) as well as for the percentage of calories from fitt and saturated fat. ${ }^{5}$

A second set of standards, based on recommendations in the National Research Council's (NRC) Diet and Health report, was defined for nutrients and food components that are analyzed by NSMP sotware but are not quantified in SMI mutrition standards (National Research Council 1989a). These irclude the percentage of calories from carbohydrate as well as total cholesterol and sodium content. ${ }^{6}$ NRC recommendations for sodium and cholesterol define suggested maximums for daily intalke. For this report, these drily standards were adapted to create meal-specific recommendations. Recommendations for lunch reflect one-third of the suggested daily maximum and recommendations for breakfast refiect one-fourth of the daily maximum. It is important to recognize that schools are not required to meet these additional standards. They are used in this report solely to facilitate understanding of the data.

5 The RDAs are currently being replaced with new standards - Dietary Reference Intakes (DRIs). These standards were not used in this anslysis because they have not yet been incorporated into NSLP or SBP regulations.

6 NSMP software also analyzes fiber. These data were not included in this report, however, because neither the Dietary Guidelines nor the NRC's Diet and Heallh report provide a quantitative recommendation for fiber intake.

Exhibit 1.2
Nutrition Standards Used in Evaluating School Meals

Nutrient	Standard
Nutrition Standards Defined in NSLP and SBP Repulations	
Calories and netrients with established Recommended Dietary Allowances (RDAs):	
Calories, protein, vitamin A, vitamin C, calcium and iron	Brealdast: One-fourth of the RDA Lunch: One-third of the RDA
Nutrients included in the Dietary Guidelines for Amaricams:	
	Breakfast and Lunch:
Total fat	$\leq 30 \%$ of total calories
Saturated fat	< 10% of total calories
National Research Council Diat and Healhh Recommendations'	
Carbohydrate	Brealfast and Lumeh: $>\mathbf{5 5 \%}$ of total calories
Cholesterol	Brealdast: $\leq 75 \mathrm{mg}$
	Lunch: $\leq 100 \mathrm{mg}$
Sedium	Brealfast: $\leq 600 \mathrm{mg}$
	Lunch: $\leq 800 \mathrm{mg}$
1 National Research Council (1989). Recommended Dietary Allowascess, 10th edition. Weatington, DC: Netional Acendemy Preses.	
${ }^{2}$ U.S. Dopartments of Hoelth and Human Servioes and Agriculture (1990). Nurition and Your Heelit: Dietary Guidelines for Americans, 3rd edition. Washington, DC: U.S. Govemment Printing Office.	
3 National Research Council (1989). Diet and cholesterol and sodium are adapted from rece	ashington, DC: Nationel Acendemy Prees. Stunderds used for as for meximum deily intake.

Comparison with SNDA- Data

The SNDA-I study collected data in SY 1991-92. SNDA-II provides an updated picture of the nutrient content of school meals offered in SY 1998-99. It was not possible, however, to directly compare SNDA-I and SNDA-II data for several reasons. First, SNDA-I was based on an umweighted nutrient analysis (reflecting the average meal offered to st $\boldsymbol{\perp}$ bents) and SNDA-II used a weighted analysis (refiecting the average meal served to students). Second, SNDA-I included both public and private schools while SNDA-II was limited to public schools. Third, because recent changes in program regulations had to be incorporated into the SNDA-II analysis, SNDA-I and SNDA-II handled comparisons to RDA standards in different ways. SNDA-I compared mean nutrient values for meals offered in each school type to all age- and gender-appropriate RDAs. Current regulations define minimum nutrition standards for meals served to children in various grade groups and encourage schools
to plan meaus based on the ages/grades of the carolled students. SNDA-II used RDA standards based on the grade configuration of each school.

To permit a comparison of SNDA-I and SNDA-II data, both data sets had to be reanalyzed. SNDA-I data were reanalyzed limiting the sample to public schools. SNDA-II data were reanalyzed using an unweighted mutrient amalysis modeled after the analysis completed in SND/-I. (Data that would be needed to complete a weighted analysis of the SNDA-I data are not available.) The methodology used in the unweighted analysis of SNDA-II data was comparable to the methodology used in SNDA-L, with the exception of slight modifications made to reflect current program emphasis on incressed use of breads, grains, and fruits and vegetables. The methodology used in both weighted and unweighted nutrient analyses is described in detail in Appendix E.

Finally, to obtain a uniform basis of comparison for calories and RDA mutrients, both SNDA-I and SNDA-II data were compared to minimum standards defined for elementary schools (grades Kindergarten (K)-6) and secondary schools (grades 7-12) in current program regulations (Exhibit 1.3). Minimum standards for breakfast are defined for grades K-12 and cover all types of schools. An optional set of breakfast standards has also been defined for grades 7-12.'

Differences noted between SNDA-I (SY 1991-92) and SNDA-II (SY 1998-99) can not be attributed to any one factor. Factors that may contribute to observed differences include changes in the food supply over time (e.g., the introduction of new products and changes in product formulations in both USDA commodity foods and foods available in the quantity food service market), as well as changes in menu planning, food purchasing and food preparation practices of school food service personnel. Differences in data collection methodology (data for all schools in SNDA-II were collected via a mail survey while data for more than half of the SNDA-I schools were collected on site) and/or in the nutrient data bases used in the two studies may also contribute to observed differences.

Organization of this Report

The remaining chapters in this report present the following information:

- Chapter Two describes characteristics of school food service program operations.
- Chapters Three and Four describe, respectively, the average nutrient content of lunches and breakfasts served in school meals programs in SY 1998-99.
- Chapter Five compares results of weighted and unweighted analyses.
- Chapter Six compares results of the current study with findings from the SNDA-I study.

[^4]
Exhibit 1.3

Minimum Nutrition Standards Defined in Current NSLP and SBP Regulations

	Grade Groupings	
Lanch	Grades K-6	Grades 7-12
Calories	664	825
Protein (gm)	10	16
Vitamin A (mcg RE)	224	300
Vitamin C (mg)	15	18
Calcium (mg)	286	400
Iron (mg)	3.5	4.5
	Grades K-17.	Grades 7-12
Brealfast	(minimum)	(optiomal)
Calories	554	618
Protein (gm)	10	12
Vitamin A (mcg RE)	197	225
Vitamin C (mg)	13	14
Calcium (mg)	257	300
Iron (mg)	3.0	3.4

Note: Stunderds used for other nutrients are identical for both SNDA-I and SNDA-II and are besed oa NSLP/SBP standerds (percent of calories from fitt and saturated fint) and NRC recommendations (peroent of calories from carbohydrate, total cholesterol and total sodium).

Appendices provide supplementary exhibits (Appendices A and B) as well as detailed information on study implementation (Appendix C); study design, response rates and sample weights (Appendix D); and methodologies used in analyzing the menu survey data (Appendix E).

Chapter Two
 Characteristics of Food Service Programs in Public NSLP Schools

This chapter describes selected characteristics of school food service programs in public schools that offered the NSLP in SY 1998-99. Topics covered include the availability of the SBP and other breakfast programs, the percentage of students approved for free and reduced-price meal benefits, student participation rates, meal prices, menu planning practices, types of meals offered and alternative sources of food available to students who do not eat NSLP or SBP meals.

The data summarized in this chapter come from two different sources: the telephone interview of SFA directors - which provided information on both SFA- and school-level characteristics - and non-memusurvey portions of the mail survey of cafeteria managers (see Appendix C). A total of 430 SFA directors completed the telephone interview. These completed interviews provided information for a total of 1,109 schools. In addition, non-menu-survey portions of the mail survey were completed by 1,036 cafeteria managers. Both of these data sets were weighted to produce estimates that are nationally representative for public elementary schools, middle schools and high schools that participated in the NSLP in SY 1998-99 (see Appendix D). Unweighted sample sizes vary depending on the data source(s) used in the exhibit; footnotes at the bottom of each exhibit clearly identify the data source(s).

School-Level Participation in the SBP

According to FNS administrative data, approximately 54 percent of public NSLP schools offered the SBP in SY 1991-92 - the time at which data were collected for the first SNDA study (USDA, FNS 1992). In the intervening years, school participation in the SBP has increased dramatically. Data from the present study indicate that more than three-quarters of all public NSLP schools offered the SBP in SY 1998-99 (Exhibit 2.1). Participation was slightly higher among elementary schools than middle schools or high schools (78% versus 75% and 73%, respectively).

Ten percent of schools offered a non-USDA breakfast program or a morning snack program. These nonUSDA programs were more common in high schools (19\%) than in middle schools (11\%) or elementary schools (7\%). Overall, 20 percent of public INSLP schools offered neither the SBP nor any other breakfast or morning snack program.

Percentage of Students Approved for Meal Benefits

Participation in the NSLP and SBP is open to all students in participating schools. Students from lowincome families are eligible to receive meals free of charge or at a rectuced price. In SY 1998-99,

Exhibit 2.1

Types of Brealfast Programs Offered by Public NSLP Schools

	Elementary Schools	Middle Schools	High Schools	All Schools
Type of Brealdast Program	Percentage of Schools			
USDA School Breakfast Program	78%	75%	73%	76%
Non-USDA program ${ }^{1}$	7	11	19	10
No breakfast program	21	21	19	20
Number of Schools (Unweighted)	385	325	326	1,036

${ }^{1}$ Includes moming anack programs or any non-USDA programs that provide food to students in the moming atter they arive at school.

Note: Percentages do not sum to 100 because some schools reported offering both the SBP and a morning snack program.
Source: Weighted tabulations of data from a mail survey of public school cafeteria managens, Fall 1998 - Spring 1999.
one-third of students enrolled in public NSLP schools were approved for free meal benefits (Exhibit 2.2). Another eight percent were approved for reduced-price meals. The percentage of students approved for free and reduced-price meal benefits was higher in elementary schools (45\%) than in middle schools (38\%) or high schools (30\%).

Among schools that offered the SBP, the percentage of students approved for free meal benefits was consistently greater than for NSLP schools overall. In SBP schools, 38 percent of students were approved for free meal benefits. The percentage of students approved for reduced-price benefits - nine percent - was comparable to the rate for all NSLP schools. As noted for all NSLP schools, the relative rate of approval for free or reduced-price meal benefits in SBP schools was greater in elementary schools (50\%) than in middle schools (43\%) or high schools (35\%).

Participation in the NSLP and SBP

On an average day during the target week for the study, approximately 60 percent of all students in NSLP schools received an NSLP lunch (Exhibit 2.3). Participation varied by type of school, with participation being highest in elementary schools - 67 percent, on average - and lowest in high schools (39\%). Participation also varied by receipt of meal benefits. Students approved to receive free lunches participated at a higher rate (80% overall) than either students approved to receive reduced-price hunches (69\%) or students who paid full price (48\%). Within each meal benefit category, elementary school students participated at higher rates than middle school or high school students.

Overall rates of student participation were notably lower for the SBP; however, the patterns of participation - the highest rates being in elementary schools and among students approved for free meal benefits and lowest rates being in high schools and among students who pay full price - were similar to the NSLP. In schools offering the SBP, 22 percent of all suudents received an SBP breakfast on an average day during the target week. Participation was considerably higher (39\%) among students approved for free meals. This was especially true in elementary schools where, on average, 44 percent of students approved for free meals received an SBP brealfast.

Distribution of Free, Reduced-Price and Paid Meals

During a typical week in SY 1998-99, 42 percent of reimbursable lunches served in public NSLP schools were served free of charge (Exhibit 2.4). Nine percent were served to students approved for reduced-price meals and the remaining 49 percent were served to students who paid full price. The distribution of meals served in the SBP was substantially differeni. The vast majority of breakfasts (71% overall) were served free of charge and only one in five breakfasts was served at fall price.

Exhibit 2.2

Approval for NSLP and SBP Meal Benefits

Program/Type of Meal Benefit	Elementary Schools	Middle Schools	High Schools	All Schools
	Average Percentage of Students			
NSLP				
Approved for free meals	36\%	30\%	24\%	33\%
Approved for reduced-price meals	9	8	6	8
Not approved for meal benefits ${ }^{1}$	55	62	70	59
Number of Schools (Unweighted)	409	349	351	1,109
SBP				
Approved for free meals	41\%	35\%	29\%	38\%
Approved for reduced-price meals	9	8	6	9
Not approved for meal benefits ${ }^{1}$	49	57	65	53
Number of Schools (Unweighted)	332	258	263	853
${ }^{1}$ Students pay full price for NSLP or SBP meals.				
Source: Weighted tubulations of date from	iew with public SIA	directors, F	1998 - Sprin	1999.

Exhibit 2.3

Student Participation in the NSLP and SBP During the Target Week

Program/Benefit Eligibility Category	Elementary Schools	Middle Schools	High Schools	All
	Average Student Participation Rates			
NSLP				
All students	67\%	52\%	39\%	60\%
Students approved for free lunches	86	75	62	80
Students approved for reduced-price lunches	76	63	52	69
Students not approved for meal benefits ${ }^{1}$	56	39	31	48
Number of Schools (Unweighted)	375	316	319	1,010
SBP				
All students	26\%	16\%	11\%	22\%
Students approved for free breakfasts	44	32	25	39
Students approved for reduced-price breakfasts	24	14	12	20
Students not approved for meal benefits ${ }^{1}$	10	5	4	8
Number of Schools (Unweighted)	309	236	241	786
${ }^{1}$ Students pay full price for NSLP or SBP meals.				
Notes: Student participation rates reflect the avenage percentage of students in esch catogory who actually roccived an NSLP or SBP meal during the target week. Calculations are basod on the avenge number of meals served during the target week, enrollment, and the number of students approved for firee or reduced-price meals.				
Source: Weighted tabuletions of data from telephone inter approved for meal benefits) and a mail survey of p during the target week), Fall 1998 -Spring 1999.	ws with public SF lic school cafeteria hibit includes only	directors (en managers (n chools thet		nber of thuc meals ser data sets.

Exhibit 2.4
Distribution of Free, Reduced-Price and Full-Price Meals During the Target Week

	Elementary Schools	Middle Schools	Eigh Schools	All Schools
Program/Type of Meal	Average Percentage of Daily Meals			

Note: Dve to rounding, percentrges may not sum to 100.
Source: Weighted tabulations of data from a mail survey of public school cafeteria managers, Fall 1998 - Spring 1999.

Meal Prices

SFA directors were asked about strategies used to set prices for USDA-reimbursable meals. Two specific strategies - actual pricing method and food cost percentage markup - were asked about directly. SFA directors were also asked to describe any other pricing methods they used. Sixty percent of SFA directors reported using an actual pricing method to determine prices charged for reimbursable meals (Exhibit 2.5). Actual pricing involves determination of all costs incurred in preparing meals, including both food costs and labor costs. Use of a food cost percentage markup was much less common, reported by only 16 percent of SFA directors.

Five percent of SFA directors reported using other pricing methods. The only single method reported by more than one perceat of respondents (2%), however, was a market comparison, or setting prices based on what schools in surrounding districts are charging. Roughly 15 percent of SFA directors were unable to answer questions about meal pricing strategies. ${ }^{1}$ Reasons for lack of knowledge included lack of involvement (e.g., prices are set by school board or food service management company) and being new to the job.

SFA directors were also asked whether meal price adjustments were implemented only when needed to offset financial losses. Responses indicate that about half of the SFAs offering the NSLP followed such a policy in SY 1998-99. Another 40 percent of SFAs did not limit price adjustments in this way. The policy for resetting meal prices was unclear in 10 percent of SFAs.

NSLP Meal Prices

Federal regulations stipulate that schools may charge no more than $\$ 0.40$ for a reduced-price lunch. No limitations are set on prices for full-price meals. In SY 1998-99, the average price for a reduced-price lumch was $\$ 0.38$, with no variation by type of school (Exhibit 2.6). A small number of schools (a total of 18 in the unweighted sample) served lunches free of charge to students approved for reduced-price meals. ${ }^{2}$ Among schools that charged for reduced-price lunches, the minimum price was $\$ 0.18$ and the maximum was the federally set maximum of $\$ 0.400^{3}$ Because the federally set maximum for a reducedprice lunch has not changed over the years, the average price charged for a recuced-price lunch has remained essentially constant since the SNDA-I study.

The average price charged for a standard full-price lunch in SY 1998-99, across all school types, was \$1.35. Average prices were $\$ 0.14$ higher in middle schools and high schools than in elementary schools ($\$ 1.44$ versus $\$ 1.30$). A few schools (three in the unweighted sample) served lunches free of charge to all

[^5]3 When zeros are excluded from calculation of average prices, means are roughly $\$ 0.01$ higher.

Exhibit 2.5
Methods Used to Set Prices for USDA-Reimbursable Meals

Methods	Percentage of SFAs
Actual pricing method ${ }^{1}$	
Yes	60\%
No	26
Don't know	15
Food cost percentage maricup ${ }^{2}$	
Yes	16
No	70
Don't know	13
Reset prices only to offiset financial loss	
Yes	51
No	40
Don't know	10
Number of SFAs (Unweighted)	430
${ }^{1}$ Prices are determined by considering all cots of buying, producing, and serving meals.	
${ }^{2}$ Prioss are determined by adding the same peroentage mariup to every food item.	
Noter: One percent of SFAs provide all meals free of charge.	
Sections may not sum to 100 percent boceuse of rounding.	
Source: Weighted tubulations of data from a telephone interview with public SFA	Spring 1999.

Exhibit 2.6
Average Prices for Reduced-Price and Full-Price Lunches

Type of Lunch	$\begin{aligned} & \text { Elementary } \\ & \text { Schools } \\ & \hline \end{aligned}$	Middle Schools	High Schools	All Schools
Price for Reduced-Price Lanches				
Mean	\$0.38	\$0.38	50.38	\$0.38
Minimum (excluding zeroes)	0.18	0.20	0.18	0.18
Maximum	0.40	0.40	0.40	0.40
Price for Standard Full-Price Lanch				
Mean	\$1.30	\$1.44	\$1.44	\$1.35
Minimum (excluding zeroes)	0.50	0.65	0.50	0.50
Maximum	2.10	2.35	2.35	2.35
Number of Schools (Unweighted)	369	317	320	1,006

[^6]Source: Weighted tabulations of data from a mail survey of public school cafeteria managers, Fall 1998 -Spring 1999.
students, including students who were not eligible for free or reduced-price meal benefits. ${ }^{4}$ Excluding these schools, the minimum price for a standard full-price lunch was $\$ 0.50$ and the maximum was $\$ 2.35{ }^{5}$ Overall, prices charged for full-price lunches have increased about 18 percent since SY 1991-92 (\$1.35 versus \$1.14).

A large majority of cafeteria managers (87\%) reported use of a single price for full-price lunches (Exhibit 2.7). However, eight percent of cafeteria managers reported offering some full-price lunches at a price higher than the standard price and six percent reported offering some full-price lunches at a price lower than the standard price. Use of alterrative prices for full-price lunches was most common in high schools.

Among schools that reported use of higher prices for some full-price lunches, the most common reason was use of a higher price for older students; however, this policy was largely limited to elementary schools. Among high schools, higher prices were most commonly used for special entrees, special sandwiches or pizza. In addition, some high schools and middle schools charged higher prices for salad bars or other food bars and for larger portions. Relative to the basic or standard full-price lunch, the average price increment for higher-priced lunches was $\$ 0.17$ for elementary schools, $\$ 0.39$ for middle schools and $\$ 0.56$ for high schools.

The principal reason for use of a lower price for some full-price lunches was, in all types of schools, use of weekly or monthly discounts. On average, lower-priced lunches cost $\$ 0.13$ less than a standard fullprice lunch. The size of the price differential varied by school type and ranged from - $\mathbf{5 0 . 1 1 \text { for }}$ elementary schools to - 50.18 for high schools.

Relationship Between Meal Price and Participation Rates Among Full-Price Students

Exhibit 2.8 shows NSLP participation rates among students not approved for free or reduced-price meal benefits (i.e., students who pay full price) based on the standard price charged for a full-price hunch. As shown, participation rates in all types of schools were inversely related to meal price. The decrease in participation with increase in meal price was most pronounced in elementary schools, where there was a 23-percentage-point difference in average full-price participation in schools with the lowest and highest meal prices. The differences for middle schools and high schools were 14 and 18 percentage points, respectively.

While these data document a negative relationship between meal price and student participation, they do not prove that higher meal prices, in and of themselves, cause lower rates of participation among students who pay full price for NSLP meals. Many other factors, including the type of community (rural, urban, suburban), geographic location, the relative wealth of the community, student acceptance of NSLP meals and the availability of a la carte foods may affect both student participation rates and meal prices.

[^7]Exhibit 2.7
Use of Multiple Prices for Full-Price Lanches

	Elementary Schools	Middle Schools	High Schools	All Schools
	Percentage of Schools			

${ }^{1}$ Bese sample includes only schools that reported using higher (or lower) meal prices. Due to small sample simes, results must be intorpreted with caution.

Notes: Exchibit includes only schools that reported serving full-pice meals and provided information on meal prices.
Column sections may not sum to 100 percent because of rounding and boceuse reapondents could provide more than one reason for higher/lower prices.

Source: Weighted tabulations of data from a mail survey of public school cafoteria manegens, Fall 1998 - Spring 1999.

Exhibit 2.8

Relationship Between Meal Price and Studont Participation Rates for Full-Price Lunches

School Level/Price of Full-Price Lunch	Average Full-Price Student Participation Rate
Elementary Schools	
\$1.05 or less	65\%
\$1.10-\$1.25	64
\$1.30-\$1.45	57
\$1.50-\$2.10	42
Number of Schools (Unweighted)	343
Middle Schools	
\$1.20 or less	46\%
\$1.25-\$1.45	48
\$1.50-\$1.55	33
\$1.60-\$2.35	32
Number of Schools (Unweighted)	288
High Schools	
\$1.20 or less	39\%
\$1.25-\$1.45	34
\$1.50-\$1.55	30
\$1.60-\$2.35	21
Number of Schools (Unweighted)	300
All Schools	
\$1.20 or less	61\%
\$1.25-\$1.45	53
\$1.50-\$1.55	40
\$1.60-\$2.35	32
Number of Schools (Unweighted)	931

[^8]
8BP Meal Prices

Federal regulations set the maximum price for a reduced-price brealfast at $\$ 0.30$. In SY 1998-99, the average price charged for a reduced-price breakfast was $\$ 0.28$, with little variation across school types (Exhibit 2.9). Four percent of SBP schools (24 schools in the unweighted sample) reportedly served breakfists free of charge to students approved for reduced-price meals. ${ }^{6}$ Among schools that charged for reduced-price brealcists, the minimum price was $\$ 0.05$ and the maximum was $\$ 0.30$. The average price charged for a reduced-price breakfast has remained virtually unchanged since SY 1991-92.

The average price charged for a full-price breakfast was $\$ 0.72$ overall, with the average for elementary schools being somewhat lower ($\mathbf{5 0 . 7 0}$) and the average for middle and high schools somewhat higher ($50.75-50.76$). One percent of SBP schools (eight schools in the unweighted sample) served breakfasts free of charge to all students, including those not eligible for meal benefits. ${ }^{6}$ Excluding these schools, the minimum charge for a full-price breakfast was $\$ 0.25$ and the maximum was $\$ 1.55$.

In comparison to prices charged in SY 1991-92, the average price for a full-price breakfast in SY 1998-99 was about 20 percent higher ($\$ 0.72$ versus $\$ 0.60$). The relative size of the increase was greatest for middle schools and high schools (27\%-32\%) and lowest for elementary schools (15\%).

Use of multiple prices for full-price breakfasts was rare, reported by less than one percent of all schools.

Menu Planning Practices

As discussed in Chapter One, USDA has focused considerable attention in recent years on the mutritional quality of meals served in the NSLP and SBP. The Department's commitment to incorporating the Dietary Guidelines for Americans has been accompanied by a concerted effort to expend memu planning options and to provide schools with technical assistance and needed resources. The SNDA-II study included a series of questions designed to provide Depertment officials with an up-to-date picture (SY 1998-99) of menu plamning practices in NSLP schools. This section summarizes findings from these questions.

Responsiltility for Mionu Planning

In almost two-thirds (64\%) of all NSLP schools, hunch memus were plamed entirely at the district level (Exhibit 2.10). In another 20 percent of schools, school-level staff members were solely responsible for planning their own lunch menus. Lunch meaus for the remaining 16 percent of schools were planned at an associated off-site kitchen (i.e., a base or central kitchen that services the school [6\%]; a combination of SFA, school and/or off-site kitchen staff [7\%]; or some other source, inchuding, but not limited to, food service management companies [FSMCs] [3\%]).

[^9]Exhibit 2.9

SBP Meal Prices

Type of Brealfast	Elementary Schools	Middle Schools	High Schools	All Schools
Price for Reduced-Price Brealdfast	$\mathbf{S 0 . 2 8}$	$\$ 0.27$	$\$ 0.27$	$\$ 0.28$
Mean	0.05	0.05	0.05	0.05
Mimimum (excluding zeros)	0.30	0.30	0.30	0.30
Maximum	$\$ 0.70$	$\$ 0.76$	$\$ 0.75$	$\$ 0.72$
Price for Full-Price Brealdast	0.25	0.25	0.25	0.25
Mean	1.54	1.55	1.55	1.55
Minimum (excluding zeros)	293	232	234	759
Maximum				
Number of Schools (Unweighted)				

Noter: Extribit includes cally schools that reported serving reduced-priee of full-price breakfints (some schoole served only friee brealfirte) and that provided datat on mool prices.
Four percont of schools served brealdints five of charge to students who are cartified for redvoed prive meel benefitis. One percent served breakfizts five of charge to all students, including those who are not certified for five meal benefite. Such meals were roported as redvoed-priee or full-price, in koeping with program rogulations, but the price charged to studente was zero.
Approximately one percent of schools reported using more than one price for full-price breakfats.
Sourve: Wighted tabulations of deta from a meil survey of public school ceffetcria menagens, Fall 1998 - Spring 1999.

The prevalence of fully centralized district-level menu planning varied slightly by type of school. Specifically, the proportion of high schools in which lunch menus were planned entirely at the district level was somewhat lower than for middle schools or elementary schools (60% versus 64% and 69%, respectively). In more than a quarter of NSLP high schools (29\%), lunch memus were planned entirely at the school level. The same was true for only 19 percent of elementary schools and 14 percent of middle schoois. The general pattern of menu planning responsibility was similar for breakfast menus.

Availability and Use of Menu Planning Resources

SFA directors were asked about the use of specific menu planning resources available from USDA and about the availability and use of other resources at the State and local level. USDA has provided all SFAs with two sets of recipes that are specifically designed to promote consistency with the Dietary Guidelines for Americans. This includes an updated version of a long-standing resource - USDA's Quantity Recipes for School Food Service - as well as USDA 's New School Lunch and Brealgast Recipes . . . A Tool Kit for Healthy School Meals, a resource developed under USDA's Team Nutrition initiative. The data indicate that schools are using both of these resources (Exhibit 2.11). According to SFA directors, SY 1998-99 menus planned for roughly nine out of 10 NSLP schools used the updated Quantity Recipes for School Food Service. In addition, menus for more than three-quarters of all schools were planned using the Tool Kit for Healthy School Meais. There was little variatiou in reported use of these resources across school types.

Menus planned in more than 90 percent of all schools used nutrition information provided by State Child Nutrition (CN) agencies (Exhibit 2.11). SFA directors for the six percent of schools where such information was not utilized indicated that the State CN office had not provided nutrition information.

Memu planners in two-thirds of all schools had access to a computer-based system for menu planning (Exhibit 2.11). Menu planners in about half of all schools actually used a computerized system to analyze the nutrient content of memus. As discussed in a subsequent section, use of a computerized system to analyze nutrient content of plamned memus was not limited to schools where NSMP or ANSMP were in use. Memu planners for non-NSMP/ANSMP schools may be using nutrient analysis sottware to monitor the nutrient content of menus planned using one of the food-based memu planning options (menu planning options used in NSLP schools are discussed in the next section).

Finally, 58 percent of all NSLP schools used a nutrition specialist to plan menus in SY 1998-99. Thirtyone percent of schools reported using a nutritionist who was not a registered dietitian; 15 percent used a registered dietitian; and 12 percent reported using both a nutritionist and a registered dietitian.

Menu Planning Options Selected by Schools

As described in Chapter One, five different memu plamning options are available to schools participating in the NSLP: the traditional food-based menu planning system, the enhanced food-based system, NSMP, ANSMP and "any reasonable approach."

Exhibit 2.10
Responsibility for Menu Planning

	Elementary Schools	Middle Schools	High Schools	All Schools
Menu Type/Locus of Responsibility	Percentage of Schools			
Lunch Menus				
SFA	64%	69%	60%	64%
School	19	14	29	20
Off-site kitchen	8	6	1	6
Combination of above	6	10	8	7
Other/food service management company	3	2	2	3
Number of Schools (Unweighted)	409	349	351	1,109
Breakfast Menus	65%	71%	58%	65%
SFA	20	13	31	21
School	6	4	1	5
Off-site kitchen	8	10	8	8
Combination of above	2	2	1	2
Other/food service management company	332	258	263	853
Number of Schools (Unweighted)				

Note: Columns may not sum to 100 percent because of rounding.
Source: Weighted tabulations of data from a telephone interview with public SFA directors, Fall 1998 - Spring 1999.

Exhibit 2.11
Availability and Use of Menu Planning Resources
$\begin{array}{lcccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Middle } \\ \text { Schools }\end{array} & \begin{array}{c}\text { High } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 3 - 5 } Menu Planning Resource \& \& Percentage of Schools\end{array}$]$

Note: Column sections may not sum to 100 percent because of rounding.
Source: Weighted tabulations of deta from a telephone interview with public SFA directors, Fall 1998 - Spring 1999.

In SY 1998-99, the food-based mera plamning systems were, by far, more common than any of the other menu planning options. Of these, the traditional food-based system - used by 41 percent of all schools -was the leading choice (Exhibit 2.12). Another 28 percent of schools used the enhanced food-based system, bringing the total percentage oi schools that used a food-based menu planning approsch to 69 percent.

The mutrient-based menu plaming options were used by 27 percent of all schools. Most of these schools used NSMP. Use of ANSMP was rare - only three percent of all schools reported this option. A small proportion of schools (4\%) reported using some other approach to mean planning. These included statcedesigned systems (Mississippi, West Virginia, Califorria) or some variation on one of the food-based meal patterns.

It is important to note that reported use of NSMP or ANSMP does not necessarily imply that the computer-based menu planning system was fully implemented at the time data were collected. Previous research has indicated that implementation of NSMP cen be a lengthy and challenging process. In a USDA-sponsored demonstration of NSMP, 16 SFAs took anywhere from three to 33 months to implement NSMP, with an average time line of 19 months (Fox 1998).?

To gain some insight into characteristics that might influence the choice of memu plamning system, data on menu planning options were cross-tabulated with data on selected school characteristics (Exhibit 2.13). In reviewing these data, it is important to recognize several limitations. First, unweighted sample sizes for some cells are small (less than 50 cases). Because of the extremely small sample of ANSMP schools (23 schools in the entire sample), NSMP and ANSMP schools were combined for this analysis. Data for the schools that used "other reasonable approsches" are reported separately, for the sake of completeness, but should be interpreted with extreme caution because of the small sample size (38 schools). Second, several of the tabulated characteristics are highly correlated with one another. For example, urban schools tend to have a higher percentage of low-income students than either rural or suburban schools. Thus, the available data do not permit an analysis of causal relationships.

Despite these limitations, the data reveal some interesting patterns regarding use of the various menu planning options, as summarized below.

- Choice of menu plamning system varied by region. Compared to the national distribution of menu planning systems, use of NSMP/ANSMP was disproportionately higher and use of the traditional food-based menu planning system was disproportionately lower in the Mountain Plains and Western regions. In contrast, schools in the Southwest region overwhelmingly used the traditional food-based system. These trends were noted in a majority of states in each region.
- Use of alternative memu planning approaches was most common in the Western region. Many of these schools were in Califormia and may have been using the state-developed SHAPE program, an early version of NSMP.

[^10]Exhibit 2.12
Menu Planning Options Used for NSLP Menus

	Elementary Schools	Middle Schools	High Schools	All Schools
Menu Planning Option	41%	41%	40%	41%
Traditional food-based meal pattern	28	30	29	28
Enhanced food-based menu system	25	24	24	24
Nutrient Standard Menu Planning (NSMP)	3	2	3	3
Assisted Nutrient Standard Menu Planning (ANSMP)	4	3	5	4
Other approach	409	349	351	1,109
Number of Schools (Unweighted)				

Note: Columns may not sum to 100 percent because of rounding.
Source: Weighted tabulations of data from a telephone interview with public SFA directors, Fall 1998 - Spring 1999.

Eshibit 2.13
Menu Planning Options by Selected School Characteristics

Characteristic	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMP } \end{aligned}$	Enhanced Food-Based	Traditional Food-Based	Other	All Options
	Percentage of Schools				
All Schools	27\%	28\%	41\%	4\%	100\%
FNS Region					
Mid-Atlantic	17	34	49	<1	100
Mountain Plains	49	35	14	2	100
Midwest	20	35	41	4	100
Northeast	35	20	44	1	100
Southeast	19	34	41	6	100
Southwest	20	6	74	0	100
Western	37	29	23	11	100
Community Type					
Urban	33	26	40	2	100
Suburban	23	32	41	4	100
Rural	30	23	41	6	100
Percent of Students Approved for Free Meals					
25 percent or less	29	34	36	1	100
26-50 percent	28	20	45	7	100
51-74 percent	22	28	44	7	100
75 percent or more	20	25	50	5	100
Mean percentage	30	30	36	42	33
Menu Planner Has Access to a Computer-Based System					
Yes	37	25	34	4	100
No ${ }^{1}$	9	34	53	4	100
Registered Dietitian or Nutritionist Plans Menus					
Yes	27	29	40	4	100
No	27	27	41	4	100

Exhibit 2.13
(continued)
$\left.\begin{array}{lccccc}\hline & \begin{array}{c}\text { NSMP/ } \\ \text { ANSMP }\end{array} & \begin{array}{c}\text { Enhanced } \\ \text { Food-Based }\end{array} & \begin{array}{c}\text { Traditional } \\ \text { Food-Based }\end{array} & \text { • } & \text { Other }\end{array} \begin{array}{c}\text { All } \\ \text { Options }\end{array}\right]$
${ }^{1}$ The nine percent of NSNMP/ANSMMP schools that reported that menu plenners did not have access to a computer were either using ANSMP or were schools in districts that use decentralized menu planning and centralized nutrient analysis. SFA directors who provided information indicated that these meau planners did not have socess to a computer at the local level and that nutrient analynis was done at the district lovel.

Note: No statistical teats were performed to assess the signifioance of obvervad differences.
Rows may not sum to exactly 100 percent because of rounding.
Source: Weighted tabulations of data from a telephone interview with public SFA directors and a mail survey of public school cafieteria managers (data on meal counts needed to calculate participation rates), Fall 1998-Spring 1999.

- Choice of menu planning system varied somewhat by type of community. Among urban schools, use of NSMP and ANSMP was notably higher than the national average. The same is true for the enhanced food-based system among suburban schools. Use of the enhanced food-based system was disproportionately lower among rural schools.
- Choice of memu planning system varied by relative level of affluence. Use of the traditional menu planning system was disproportionately higher and use of NSMP/ANSMP was disproportionately lower among the lowest-income schools - those with 75 percent or more of students approved for free or reduced-price meals. The most affluent schools - those with no more than 25 percent of students approved for free-meal benefits - used the enhanced food-based menu system more frequently than schools with greater concentrations of low-income students.
- Use of NSMP/ANSMP was notably greater among schools that had access to a computer system (at the time data were collected) than among schools that did not have such access. However, access to a computer system did not guarantee use of NSMP/ANSMP. More than 60 percent of schools with reported access to a computerized memu planning system were not using NSMP/ANSMP.
- The use of a registered diectitian or nutritionist to plan menus had no apparent association with menu planning option.
- Schools that used FSMCs (12 percent of all schools) used NSMP/ANSMP more often than schools that did not use FSMCs.

Nutrient Analysis Procedures in Schools Using NSMP and ANSMP

For schools in which menus were planned using NSMP or ANSMP, SFA directors provided additional information on selected aspects of the procedures used in conducting nutrient analyses. Information was obtained on the use of combined amalyses for breakfast and lunch menus, use of weighted nutrient analyses, the source of data for weighted nutrient analyses and the age/grade groupings used in defining reference mutrient standards.

Analysis of Brealfast and Lunch Menus

Federal regulations permit schools implementing NSMP or ANSMP to analyze the mutrient content of lunch and breakfast memus separately or to combine them. The rationale for allowing a combined analysis is that the Dietary Guidelines are intended to apply to total daily consumption rather than to individual meals. Regardless, schools are required to weight the nutrient contribution from each meal according to levels of participation in each program.

In SY 1998-99, schools that conducted analyses of both brealfast ind lunch menus were more likely to analyze each meal separately than to complete a combined analysis (Exhibit 2.14). Among schools using NSMP or ANSMP, 44 percent completed separate analyses for brealfast and lunch menus and 28 percent completed a combined analysis (Exhibit 2.14). The combined analysis was most common in middle schools (42\%) and least common in elementary schoois (25\%).

Exhibit 2.14
Menu Analysis Procedures Adopted by Schools Using NSMP or ANSMP

Meau Analysis Procedure	Elementary Schools	Middle Schools	High Schools	All Schools
	Percentage of NSMP/ANSMP Schools			
Analysis of Brealcast and Lunch Menus				
Analyze breakfast and lunch separately	43\%	44\%	50\%	44\%
Complete one combined anslysis for breakfast and hunch	25	42	30	28
Analyze hunch only	25	13	18	22
Anslyze breakfast only	7	1	1	5
Use Weighted Nutrient Analysis				
Yes	72\%	75\%	78\%	74\%
No	28	25	22	26
Source of Data Used for Weighted Nutrient Analysis ${ }^{1}$				
Projected servings	67\%	64\%	69\%	67\%
Both actual and projected servings	31	21	19	27
Actual servings	3	15	11	6
Number of Schools (Unweighted)	113	92	89	294
${ }^{1}$ Bese sample includes only schools that perform a weighted nutrient analymis.				
Notes: Exhibit includes conly schools that use Ns Column sections may not sum to 100 per	NSMP. wee of rounding.			
Source: Weightred tubulations of detas from telepphather	views with public	directors, F	998 - Spring	

Use of Weighted Nutrient Analysis

NSMP and ANSMP are designed around use of a weighted nutrient analysis. A weighted analysis takes into account the number and types of foods actually served to students, giving greater weight to the foods that are served more frequently. As such, results of a weighted nutrient analysis provide a picture of the average meal served to or selected by students. Regulations require that all schools maintain meal production records to provide the information on food selection patterms needed for a weighted analysis.

An unweighted analysis does not consider student selection patterns. The analysis constitutes a simple average of all foods offered to students. An unweighted nutrient analysis provides an assessment of the average meal offered to students. Prior to SMI, assessments of the mutrient content of school meals were typically based on unweighted analyses.

During the time data were being collected for this study, regulations were changed to permit use of an unweighted analysis, through SY 2003, for SFAs or schools that obtain a waiver from their State agency (P.L. 105-336). Because this change was implemented after the study was underway, data on the use of waivers were not collected.

In SY 1998-99, roughly three-quarters of the schools reporting use of NSMP or ANSMP were using weighted analyses (Exhibit 2.14). The remainder were conducting unweighted analyses, presumably under a waiver from their State agency. Schools may have been using unweighted rather than weighted analyses because they were still in early stages of NSMP/ANSMP implementation.

Schools reported using a variety of approaches to incorporate information on student food selection patterns into their weighted nutrient analyses. Two-thinds of the NSMP/ANSMP schools that performed weighted analysis reported that their analyses were based on projections of the numbers of servings of each food to be served. Another 27 percent of schools reported using projections as well as actual production information (i.e., records of the number of portions actually served). This prectice was more common in elementary schools (31\%) than in either middle schools (21\%) or high schools (19\%). Finally, a relatively small percentage of schools (6% overall) inclicated that their weighted analyses were based entirely on actual meal production data. This approach was largely used by middle schools and high schools and was rarely used in elementary schools.

Age/Grade Grouping Used in Nutrient Analysis

Schools using NSMP or ANSMP are afforded several options for developing lunch and breakfast memus that meet nutrient requirements for students of different ages. The nutrition standards against which planned memus are compared (nutrient content averaged over a week) may be based on one of the following:

- USDA-defined age groups: 3-6 years; 7-10 years; 11-13 years; and 14 years and older.
- USDA-defined grade groups: preschool; kindergarten (K) to grade 6; and grades 7-12.
- Customized age or grade groups that match the configuration of the school. USDA guidance suggests that elementary schools with large age/grade spans perform more than one analysis, breaking the analysis at or around grade 6.

The age or grade group defined by a school dictates the calorie and nutrition standards for meals served in that school (Appendix E describes how NSMP software calculates customized RDAs).

Based on SFA director reports, more than three-quarters of all schools using NSMP or ANSMP in SY 1998-99 used grade groups rather than age groups to define mutrition standards (Exhibit 2.15). Moreover, most schools used customized grade or age groups rather than one of the USDA-defined groups. This was true for elementary schools, middle schools, and high schools.

Among elementary schools using NSMP or ANSMP, one-fith used the USDA-defined grade group of grades K-6 to define nutrition standards. Another seven percent used the USDA-defined age group of ages 7-10. The remaining elementary schools used a customized grade or age group. The most common was the slightly narrower grade group of K-5 (29\%). Twenty percent of elementary schools used some other grade span that more closely matched their own grade configuration and nine percent used a customized age span. A total of three percent of elementary schools reported analyzing meaus using more than one age or grade group to accurately reflect differing nutritional needs of older and younger students.

The most common age/grade grouping used in analyzing middle school menus was the customized grouping of grades 6-8 (52\%). This is consistent with the most common middle school grade configuration. The customized grouping of grades 7 and 8 was a distant second, reported by 16 percent of all middle schools using NSMP or ANSMP. None of the middle schools in the sample reported using the USDA-defined grade grouping of grades 7-12. Eleven percent of middle schools used the USDAdefined age group of ages 11-13.

Finally, among high schools using NSMP or ANSMP, the most common age/grade group used in analyzing menus was the customized grouping of grades $9-12$. This grouping, used by roughly six out of 10 NSMP/ANSMP high schools, is consistent with the most common grade configuration for high schsols. The USDA-defined group of grades $7-12$ was used in 15 percent of high schools. Twelve percent of high schools used the USDA-defined age group of 14 years and older.

Incorporating the Dietary Guidelines for Americans into School Meals and Perceived Effects on Acceptability and Food Waste

Since 1995 and the launch of SMI, all SFAs have been expected to make changes, as needed, in meau planning, food purchasing and food preparation practices to promote consistency with the Dietary Guidelines. Cafteria managers have varying levels of responsibility for designing and implementing these changes, depending on how an SFA is organized, i.e., the level of local versus centralized planning and decision making. Regardless of their level of direct involvement in planning, cafeteria managers are on the front lines in implementing change and thereby have a unique perspective on how well any given change is accepted by students.

According to cafeteria managers, 87 percent of all NSLP schools had made some changes in lunch menus prior to or during SY 1998-99 in order to incorporate the Dietary Guidelines for Americans (Exhibit

Exhibit 2.15

Grade/Age Groupings Used by NSMP and ANSMP Schools in Conducting Nutrient Analyses

School Level/Groupings Used	Percentage of NSMPIANSMP Schools
Elementary Schools	
Type of Grouping Used	
Grade groups	82\%
Age groups	18
Specific Grade/Age Groups Used	
Grades K-5	29
Grades K - 6^{1}	20
Other grade span	20
Other age span	9
Ages 7-101	7
Grades 1-6	6
Two different age groups ${ }^{2}$	2
Two different grade groups ${ }^{2}$	1
One analysis for grades K-8, K-12, or other large grade span	8
Number of Schools (Unweighted)	113
Middle Schools	
Type of Grouping Used	
Grade groups	76\%
Age groups	24
Specific Grade/Age Groups Used	
Grades 6-8	52
Grades 7-8	16
Ages 11-13 ${ }^{1}$	11
Other grade span	8

Eshibit 2.15

(continued)

School Level/Groupings Used	Percentage of NSMPIANSNP Schools
Middle Schools (con't)	
Ages 11-14	6
Other age span	5
Ages 14 and above ${ }^{1}$	2
Grades 7-121	0
Number of Schools (Unweighted)	92
High Schools	
Type of Grouping Used	
Grade groups	84\%
Age groups	16
Specific Grade/Age Groups Used	
Grades 9-12	59
Grades 7-12 ${ }^{1}$	15
Ages 14 and above ${ }^{1}$	12
Other grade spen	5
Grades 10-12	4
Other age span	4
Number of Schools (Unweighted)	89
${ }^{1}$ USDA-defined gradelage grouping.	
${ }^{2}$ School complites two seperate analyees for younger and older clementry school childree.	
Noter Exaibit includes only schools that	
Source: Weighted tubulations of data from telephone interviews with public SFA directors, Fall 1998-Spring 1999.	

2.16). Managers in schools where such changes had been made were asked whether the changes had influenced the acceptability of school lunches.

Results indicate that, in more than eight out of 10 schools, attempts to incorporate the Dietary Guidelines into lunch menus had neutral or positive effects on meal acceptability. Forty-three percent of managers in schools where changes had been made to incorporate the Dietary Guidelines reported that students liked the new hunches about the same as the old hunches. A roughly equivalent propertion (38\%) indicated that students liked the new lunches somewhat better or much better than the old hunches. A much smaller percentage of managers (14\%) believed that incorporation of the Dietary Guidelines reduced meal acceptability.

The general pattern of responses was comparable across school types. However, compared to elementary school and middle school managers, fewer high school managers reported a positive effect (35% versus $39-40 \%$) and a greater percentage reported no effict or a negative effect (61% versus $55-56 \%$).

Exhibit 2.17 tabulates responses by memu planning option. Results were generally comparable to those reported above and indicate a neutral to positive effect in most schools regardless of the memu planning method used. However, managers in schools using the traditional food-based menu planning system were more likely than other managers to report that the Dietary Guidelines had recuced the acceptability of school hunches. Twenty percent of managers in schools using the traditional food-based system believed that students liked the new lunches somewhat less or much iess than the old lunches, compared to 11 percent of managers in schools using the enhanced food-based system or one of the two nutrientbased menu planning options. This result may indicate that it is more difficult to incorporate the Dietary Guidelines successfully using the traditional food-based menu planning system. It may also reflect a somewhat more negative attitude toward change among managers who are continuing to use the traditional system.

Cafeteria managers were also asked specifically about the impact of Dietary Guidelines changes oa the amount of food wasted at hunch. With the exception of cooked vegetables (other than French fries), neutral or positive effects (i.e., that students were wasting less food than they had before premus were changed to incorporate the Dietary Guidelines) were reported by roughly 85 to 90 percent of managers (Exhibit 2.18). Moreover, for every food group queried, 25 to 40 percent of cafeteria managers, overall, reported reduced food waste.

In general, fewer than 10 percent of cafeteria managers reported that students were wasting more food than they had wasted prior to implementation of Dietary Guidelines changes. An exception to this rule was noted for cooked vegetables (other than French fries). Nineteen percent of managers reported increased waste of cooked vegetables.

For some food groups, perceptions about the impact of Dietary Guidelines changes on food waste at lunch varied by type of school. Middle school and high school managers reported an increase in the amount of milk wasted more often than elementary school managers. In contrast, elementary school managers reported increased waste of main dishes and breads and decreased waste of desserts more often than middle school managers or high school managers.

Exhibit 2.16
Percentage of Schools Reporting Changes in Lunch Menus to Incorporate the Dietary Guidelines for Americans and Perceived Effect on Meal Acceptability
$\begin{array}{lccccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Middle } \\ \text { Schools }\end{array} & \begin{array}{c}\text { High } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 2 - 6 } \& \& Percentage of Schools\end{array}$]$

[^11]Note: Columns may not sum to 100 percent bocause of rounding.
Source: Weighted tabulations of deta from a mail survey of public school cafeteria managers, Fall 1998 -Spricg 1999.

Exhibit 2.17
Percentage of Schools Reporting Changes in Lunch Menus to Incorporate the Dietary Guidelines for Americans, by Menu Planning Option, and Perceived Effect on Meal Acceptability
$\begin{array}{lccccc}\hline & \begin{array}{c}\text { NSMP/ } \\ \text { ANSMP }\end{array} & \begin{array}{c}\text { Enhanced } \\ \text { Food-Based }\end{array} & \begin{array}{c}\text { Traditional } \\ \text { Food-Based }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 2 - 6 } \& \& Percentage of Schools\end{array}$]$
${ }^{1}$ Bese sample includes only schools in which changes had been made in lunch menus to incorporate the Dietary Gurideliness for
Americans.
Note: Colurnns may not sum to 100 percent because of rounding.
Source: Weighted tabulations of data from a mail survey of public school cafeteria managens, Fall 1998 - Spring 1999.

Exhibit 2.18

Perceived Effect of Changes in Lunch Menus on Levels of Food Waste

Food/Perception of Change in Waste	Elementary Schools	Middle Schools	High Schools	All Schools
	Perceatage of Schools			
Milk				
Students waste more	2\%	7\%	5\%	3\%
Students waste less	24	28	24	25
No change	68	58	66	66
Don't know	6	7	5	6
Main Dish/Entree				
Students waste more	10	6	5	8
Students waste less	37	39	33	36
No change	50	48	57	51
Don't know	4	8	6	5
Bread or Bread Alternate				
Students waste more	9	5	5	7
Students waste less	38	40	31	37
No change	51	49	53	52
Don't know	3	6	5	4
Salad/Raw Vegetables				
Students waste more	12	11	7	11
Students waste less	36	36	35	36
No change	48	46	54	49
Don't know	5	7	4	5
Cooked Vegetables (other than French fries)				
Students waste more	18	19	20	19
Students waste less	25	28	23	25
No change	53	47	52	52
Don't know	4	6	4	4
Fruit				
Students waste more	6	7	7	7
Students waste less	42	41	32	40
No change	49	46	58	50
Don't know	2	7	4	3
Desserts				
Students waste more	3	2	1	2
Students waste less	38	30	34	36
No change	54	55	56	54
Don't know	6	13	9	8
Number of Schools (Unweighted)	330	280	285	895

Notes: Exchibit includes only sohools in which changes had been mede in lunch menus to incorporate the Dietary Guidelines for Americans.
Column sections may not sum to 100 percent because of rounding.
Source: Weighted tabulations of data from a mail survey of publie school cafeteria managen, Fall 1998 - Spring 1999.

Brealfast Menus

A comparable series of questions was asked in relation to breakfast memus. Two-thirds of cafeteria managers in SBP schools reported that changes had been made in brealcast menus to incorporate the Dietary Guidelines (Exhibit 2.19). The fact that the prevalence of menu change was lower for breakfast menus than for lunch menus (66% versus 87% (Exhibit 2.17]) is not surprising. The first SNDA study found that breakfasts offered in SY 1991-92 were substantially more consistent with Dietary Guidelines recommendations than lunches.

According to cafeteria managers, Dietary Guidelines changes in breakfast menus were even less likely to have a negative effect on meal acceptability than changes in lunch memus (Exhibit 2.19). Fewer than six percent of managers in schools with revised breakfast menus reported a negative effect, compared to 14 percent of managers in schools with revised lunch menus. The perception that modified breakfasts were somewhat less acceptable or much less acceptable than previous brealfasts was largely concentrated among high school managers (12% versus $3-4 \%$).

In addition, a marked positive effect (i.e., the perception that students liked new brealfasts much better than old breakfasts) was more commonly reported for modified brealfast menus (25%) than for modified lunch menus (15%). This response was most common among elementary school managers.

Cafeteria managers' perceptions about the impact of changes in brealfast menus on levels of food waste are tabulated in Exhibit 2.20. Results are consistent with findings reported in the previous discussion of changes in lunch menus. For every food group queried, 31 to 45 percent of cafeteria managers reported that students were wasting less food than thoy had before menus were changed to incorporate the Dietary Guidelines. Reports of increased waste were rare.

There were some variations in perceptions about the effect of Dietary Guidelines changes on food waste at breakfast across school types. These were largely consistent with those described in the preceding discussion of perceived effects on food waste at lunch.

Types of Meal Service Offered

Schools participating in the NSLP offered students a variety of different types of hunch meals in SY 1998-99 (Exhibit 2.21). Virtually all schools offered a hot meal at least once per week and 88 percent of schools offered a hot meal every day. Cold meals, such as sandwiches and salad plates, were offered at least once per week in more than two-thirds of all schools. Almost half of all schools (47\%) offered a cold meal every day of the week. More than three-quarters of all schools offered hot sandwiches, such as hamburgers or hot dogs, or pizza at least once per week. Roughly one-third of all schools offered a hot sandwich or pizza every day of the week. Salad bars and other food bars were notably less common, offered in only 27 percent of all schools. Schools that did offer such bars tended to offer one every day of the week. Finally, more than half of all schools (59\%) offered at least some items that were not part of the USDA reimbursable meal on an a la carte basis. Again, schools that offered such a la carte foods almost always offered them every day of the week.

Percentage of Schools Reporting Changes in Brealfast Menus to Incorporate the Dictary Guidelines for Americans and Perceived Effect on Meal Acceptability

	Elementary Schools	Middle Schools	High Schools	All Schools
	Percentage of Schools			
Changes Made in Brealdast Menus to Incorporate the Dietary Guidelines for Americans				
Yes	67\%	71\%	60\%	66\%
No	34	30	41	34
Number of Schools (Unweighted)	317	245	246	808
Perceived Effect of Changes on Acceptability of Brealdasts ${ }^{1}$				
Students like new breakfasts much better than old breakfasts	27\%	21\%	19\%	25\%
Students like new breakfasts somewhat better than old breakfasts	13	26	20	16
Students like new breakfasts about the same as old breakfasts	49	48	47	49
Students like new breakfasts somewhat less than oid breakfasts	4	3	10	5
Students like new breakfasts much less than old breakfasts	0	<1	2	<1
Don't know	7	2	2	5
Number of Schools (Unweighted)	199	160	151	510

${ }^{1}$ Bese sample includes only schools where the SBP is offered and the reepondent indicated that changes had been made in breakinst menus to incorporate the Dietary Guidelines for Americans.

Note: Columns may not sum to 100 percent because of rounding.
Source: Weighted tabulations of data from a mail zurvey of public school cafeteria managers, Fall 1998-Spring 1999.

Eshibit 2.20
Perceived Effect of Changes in Brealfiast Menus on Levels of Pood Waste

	Elementary Schools	Middle Schools	High Schools	All Schools
	Percentage of Schools			

Noter: Evhibit includes only schools where the SBP is offered and changes were made in breakfist menus to comply with
the Dietary Guidelines for Americens.
Column sections mey not sum to 100 percent because of rounding.
Source: Weighted tabulations of a mail survey of public school cafiteria mangers, Fall 1998 - Spring 1999.

Types of Meal Service Offered at Lunch

Type of Meal Service/Frequency	$\begin{aligned} & \text { Elementary } \\ & \text { Schools } \end{aligned}$	Middle Schools	High Schools	All Schools
	Percentage of Schools			
Hot Meal				
Every day	87\%	92\%	89\%	88\%
3-4 times per week	8	2	8	7
1-2 times per week	4	2	2	3
Not offered	1	4	1	1
Cold Meal, Such as Sandwich or Salad Plate				
Every day	39	52	68	47
3-4 times per week	4	9	5	5
1-2 times per week	20	17	9	17
Not offered	38	21	17	31
Hot Sandwich, Such as Hamburger, Hot Dog, or Pizea				
Every day	20	53	63	34
3-4 times per week	17	16	13	16
1-2 times per week	32	17	12	26
Not offered	31	14	12	24
Salad Bar or Other Food Bar				
Every day	12	27	49	21
3-4 times per week	3	2	4	3
1-2 times per week	2	5	5	3
Not offered	83	66	42	73
A la Carte Items Not Part of USDA Reimbursable Lunch ${ }^{1}$				
Every day	41	77	73	53
3-4 times per week	1	0	2	1
$1-2$ times per week	5	1	1	4
Not offered	52	22	23	41
Number of Schools (Unweighted)	385	325	326	1.036

${ }^{1}$ Percentages reported for a la carte sales in this exhibit are not consistent with those reported in Exhibit 2.23 becuuse this echitit reports only availability of a la carte items that are mot part of USDA-reimbursable hunch. Exhibit 2.23 reports on all a la carte anles (i. e., sales associatod with the purchnse of foods that are offered strictly a la carte as well as the purchase of one or more foods offered in USDA-reimbursable menls a la certe.

Note: Column sections may not sum to 100 perceat beceuse of rounding.
Source: Wcighted tebulations of a mail survey of public school cafeteria mangers, Fall 1998 - Sping 1999.

The availability and frequency of various meal service options varied across school types. ${ }^{8}$ Options other than a traditional hot meal were notably more common in middle schools and high schools than in elementary schools. In addition, middle schools and high schools were more likely to offer these alternative meal options every day of the week. This was especially true for a la carte items not included in reimbursable meals. In more than half of all elementary schools, such items were never offered. In contrast, roughly three-quarters of middle schools and high schools offered some items on a strictly a la carte basis every day of the week.

Breakfast Menus

Almost all schools participating in the SBP offered both hot and cold brealdfasts (Exchibit 2.22). Ninctyone percent of SBP schools offered a cold breakfast one or more days per week and the same percentage offered a hot breakfast one or more days per week. More than half of all schools (56\%) offered a cold breakfast every day. A somewhat lower percentage (50\%) offered a hot breakfast every day, such as hot cereal, pancakes or waffies, eggs or a breakfast sandwich.

A la carte foods were much less common at breakfast than at lunch. Only about a quarter of all schools offered breakfast foods on a strictly a la carte basis (i.e., foods that were not offered as part of the reimbursable breakfast and had to be purchased separately). (Roughly 60 percent of all schools offered items or a strictly a la carte basis at hunch.)

There were some differences in breakfast offerings in different types of schools. Middle schools and high schools offered hot breakfasts more often than elementary schools and were also more likely to offer hot and cold breakfasts every day of the week. Middle schools and high schools were also more likely to offer a la carte breakfast items. A la carte breakfast items were most commonly offered in high schools.?

Alternatives to NSLP and SBP Meals

Students who do not purchase or receive NSLP or SBP meals have several alternatives for obtaining a lunch or brealfinst from other sources. In addition to bringing food from home or, in the case of breakfast, eating a meal before coming to school, possible options include:

- purchasing components of the USDA-reimbursable meal (but not enough to qualify as a meal) or a la carte items from the cafeteria;
- buying food from a school store, snack bar or vending machine; and
- leaving school to buy food or go home for humch.

[^12]Exhibit 2.22
Types of Meal Service Available at Brealdast
$\begin{array}{lcccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Middle } \\ \text { Schools }\end{array} & \begin{array}{c}\text { High } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 3 - 5 } Type of Meal Service/Frequency \& \& Percentage of Schools\end{array}$]$
${ }^{1}$ Porcentrges reported for a la aente seles in this erchibit are not concistent with those reported in Eraibit 2.23 becesse this
 all a la carte males (i. e., mies ascociated with the purchase of foods that are offiered strictly a la carite as well as the purchase of one or more foods ofiered in USDA-reimbursable moels a la caris).

Notrx Column sections may not sum to 100 percent because of rounding.
Source: Weighted tabulntions of data from a mail survey of publio school cafotecia manegens, Fall 1998-Spring 1999.

This section presents data on the incidence of these altematives at schools participating in the NSLP. It also describes the types of foods available a la carte and the specific items offered. Finally, it describes the weekly a la carte revenue generated by NSLP schools.

Options Other than USDA-Reimbursable Meals

The most common option available for students who do not purchase a USDA-reimbursable meal is purchase of items a la carte. ${ }^{10}$ This option, which includes items offered strictly a la carte as well as a la carte purchase of individual components of the USDA-reimbursable meal, was available at lunch in more than nine out of 10 NSLP schools (Exhibit 2.23). As discussed in a subsequent section, this option is sometimes limited to a la carte purchase of milk, juice and/or dessert to accompany a meal brought from home.

Students were much less likely to have the option to purchase a la carte foods at brealfast. This is especially true at the elementary school level, where only 27 percent of schools offered foods a la carte at breakfast. Availability of a la carte breakfast foods was greater at the middle and high school levels 48 percent and 60 percent, respectively - but was still substantially lower than lunch.

Vending machines that were available wo stwdeatis during school hours provided an alternative source of food or beverages in one-third of all NSL'' schools. Roughly a quarter of all schools reported vending machines located in or near the cafetcris. Nineteen percent of schools offered food or beverages through school stores, snack bars or canteens, and student fundraisers provided an alternative source of food in a small percentage (3\%) of schools. Eleven percent of NSLP schools provided maximum access to alternative sources of food by permitting students to leave school grounds for hunch.

Vending machines were much more common in middle schools (55\%) and high schools (76\%) than in elementary schools (15\%). The same is true of school stores and canteens. Vending machines were most prevalent at the high school level. In addition, the ability to leave school for lunch was largely limited to high schools (29\% versus 6\% (middle schools) - 8\% (elementary schools)).

Foods Oniored a le Carte

As noted above, more than nine out of 10 NSLP schools offered a la carte foods at hunch and 36 percent of schools offered a la carte foods at breakfast. Beverages, most often milk, were sold in all schools that offered a la carte foods (Exhibit 2.24)." With the exception of milk, virtually all a la carte items were more commonly offered at the middle and high school levels. This reflects the finct that a la carte sales in some elementary schools were limited to milk or other items (juice, dessert items) to accompany a meal brought from home. Thirty-nine percent of elementary schools reported a la carte programs that were limited to these items. The same was true for only eight percent of middle schools and six percent of high schools.

[^13]11 The cheoklist used to gether information on a la cerite offierings (see Appendix C) did not diffimentime between foode offirod at breelint and foods offired at lunch.

Nom-USDA Food Options Available During School Elours

Nom-USDA Food Option	$\begin{aligned} & \text { Elementary } \\ & \text { Schools } \end{aligned}$	Middle Schools	High Schools	All Schools
	Perceatage of Schools			
A la carte foods at hunch	90\%	98\%	94\%	92\%
A la carte foods at breakient	27	48	60	36
Vending machines anywhere in school	15	55	76	33
Vending machines in or near cafteria ${ }^{2}$	7	38	63	23
Vending machines in different part of school	11	37	54	23
School store, snack bar, or canteen	9	35	41	19
Morning snack program/other non-USDA breakfinst	7	11	19	10
Opportunity to leave school grounds for lunch	8	6	29	11
Student sales/fimedraisers	2	5	7	3
Number of Schools (Unweighted)	385	325	326	1,036

- Bese sample includes only sohools that officr the SBR.
${ }^{2}$ Among sohools thet have veoding machines anywhere in the sobool, 49 percent of clementry sohoois, 69 preceat of midile schook, and 83 percent of high schools heve maohines that ars loceted in or newr the cenfitain.

Notess. Schools may have voading mechines in both locesiona.
Percenteges reported for a la cente foode at broabent end luach inchude all a la carte meles (i. a., the oplion to perchase

Poncontrges are not concitant with those showa in Brahibits 2.21 and 2.22 boosuse those eacilitite report only availabity of a le ceite itrms that ere not part of USDA-ruimbursable mools

Source: Weightrd thbulations of a meil murvey of publio sohool cafitacia mangens, Foll 1998-Spring 1999.

Eshibit 2.24
Availability of a la Carte Food Items at Brealdast and/or Lunch

Foed Grour/reed	$\begin{aligned} & \text { Elementary } \\ & \text { Schools } \end{aligned}$	$\begin{aligned} & \text { Middle } \\ & \text { Schoolt } \end{aligned}$	$\begin{gathered} \text { Hight } \\ \text { Schools } \end{gathered}$	All School
	Percentage of Sclivels			
Any a le coste Foed	90\%	98\%	94\%	92\%
Milk oaly	28	6	4	20
Milk and juice and/or dessart only	11	2	2	8
Beverages	90	98	94	92
Milk	90	98	94	92
Juice (50-100\%)	34	59	67	44
Juice drinlcs	16	53	61	30
Mineral water or other botiled water	12	38	51	23
Tes	9	19	37	16
Millsthelce or malt	1	15	13	6
Carbonated soft drinks	1	8	16	5
Coffee	3	3	15	5
Hot chocolate	2	5	19	5
Non-criboosted sotit drinks	2	8	4	3
Bolvel GeolerDeseerts	35	72	76	49
Cookies	28	62	68	41
Calees, cupealces, brownies	15	42	58	27
Pastries (pies, turnovers)	3	14	25	9
Oher batiod goodedemerts	11	30	38	19
Breed or Grale Predecte	29	65	77	44
Crackess, granola bers, preteols, and similer grain prodects	21	48	64	33
Bread, rolls, bagels	15	42	58	27
Biscuits, croissents, hot preteres	9	25	39	17
Murfins	2	16	25	8
Tortilles	4	7	14	6
Cereel (ready-40-en)	1	1	1	1
Rioe or pata	1	<1	2	1
Cundy	2	15	24	8
Freven Doweerts	30	58	62	41
loe cremm bars, scoops, sundess	26	53	57	36
Froem fluit juice bars, popsicles	8	23	24	13
Lowfit froem yogurt, ice milk, sharbet	10	18	19	13
Fres	25	53	70	38
Freeh fruit	20	45	63	32
Censedocolved fiuit	14	28	40	21
Fruit suled	1	4	8	3

Exhibit 2.24
(comtinued)

Food Grour/Toed	$\begin{aligned} & \text { Elematary } \\ & \text { Schoole } \end{aligned}$	$\begin{aligned} & \text { Miditle } \\ & \text { Scheols } \end{aligned}$	$\begin{aligned} & \text { Hingh } \\ & \text { Schools } \end{aligned}$	
	Peremene of Scheols			
Moent and Meat A Mernationtatrues	34	78	80	50
Beof	11	42	59	25
Hemburgers or choencburgers	4	28	42	15
Other beef	6	14	25	11
Chili or barritos	3	17	25	9
Pouliny	8	34	52	20
Chicken petty	3	17	33	11
Other chicken	2	17	27	9
Turkey	3	13	20	8
Other Meat	13	35	50	23
Cold cuts	7	21	35	14
Sensuge or park	3	13	21	8
Hot doge com dog franks and beans	3	13	17	7
Meat Allemater	14	42	50	26
Cheese (not in sandwich)	4	24	28	12
Peemst butter, peemits, sunflower seeds, other nuts	7	17	21	11
Eger	4	7	15	7
Finh	5	7	11	6
Cheese sandwich	2	8	16	6
Beens or pees (logames)	1	4	13	4
Mtrod Diethes	22	67	73	39
Pima (with moea)	7	45	46	20
Chaf soled or other suled plate	10	21	32	15
Pima (without meat)	4	24	35	13
Maxicen food	2	17	28	9
Soup with meat cr beens	5	12	20	9
Mecruai and cheese	3	8	4	4
Specheri, lasage, revioli, stufed shells	3	11	11	5
Ohter smadwiches	1	4	7	3
Chinese foed	<1	2	5	1
Other mineed dintise	1	<1	1	1
Veputanios	23	6	72	38
Fried potitoes (pre-fied, ovea beloed, Fruch fives)	13	40	61	27
Seleds	11	35	50	22
Vegtebles, Other cocked	11	26	36	18
Vepereble scup	4	6	14	6
Pioldes	1	3	1	1

Entibit 2.24
(continued)

Foed Greneriood	$\begin{aligned} & \text { Elementary } \\ & \text { Schoolt } \end{aligned}$	$\begin{aligned} & \text { Middle } \\ & \text { Schoole } \end{aligned}$	$\begin{gathered} \text { Hiligh } \\ \text { Schools } \end{gathered}$	$\underset{\text { Schoole }}{\text { Al }}$
	Percuatage of Schools			
Sasacks	24	63	71	39
Chips	16	57	69	32
Other snacks	15	37	42	24
Popoom	9	20	29	14
Nuts and seeds, trail mix	3	10	14	6
Yerart	9	24	40	17
Number of Schools (Unweiphtal)	385	325	326	1.036

Note: Some foods, such as carbonted drinks, oertain candies and wher iops, are considered foods of "Minimal Nutritional Valve" and regulations prohilit their mele in food service areas during meek unless they are apocificelly emoepted becouse of naturally oceuring nutritional valve.

Source: Weigitad tabulations of dhte from a meil survey of publie sahool cafteria menagers, Fall 1998 -Spring 1999. Based on A la Certe Chookint; see Appendix C.

Aside firom milk, the most common a la carte offerings were juice (44\% of schools); cookies (41\%); mixed dishes (inchuding pizza) (39\%); ice cream (36\%); grain products such as cracloers, granola bers, and pretrels (33\%); fiesh fruit and snack chips (32% each); juice drinks (30\%); breed, rolls, and bagels (27\%); baked deaserts such as calces, cupcakes and brownies (27\%); and French fries and other potato products (27\%).

Average Weolidy a fa Certo Rovenus

On average, a la carte sales in NSLP schools genernted $\$ 913$ per 1,000 students during a typical week in SY 1998-99 (Exhibit 2.25). ${ }^{12}$ There wes considerable variation in a la carte reverue acroes school types. Average weeldy sales for elementary schools (S375) was roughly ono-fifth that of middle schools $(\$ 1,760)$ and high schools $(\$ 1,985)$.

A la carte revempe was also afficted by the nature of the a la carte seles in the school. Schools that sold non-USDA foods strictly a la carte took in roughly four times more a la carte revenve per week then schools in which a la carte sales were limited to purchase of individual components of the USDAreimbursable meal ($\$ 1,276$ per 1,000 students versus $\$ 325$ per 1,000 students).

In addition, the relative poverty level of the student population, measured by the percentage of students approved for fice and reduced-price meals, was inversely related to weeldy a la carte revema. Weeldy a la carte revenue in schools with relatively fow low-income students (25 parcent or less) was more than four times that of schools with high concentrations (75 percent or more) of low-income stedents ($\$ 1,282$ versus \$300). This pattem is also reflected in the variation in a la carte reveane seen in schools that did and did not offer the SBP and, to a lesser erdenet, in schools that did and did not sarve suburben populations. Schools that offared the SBP and urban and rural schools tended to have higher concentrations of low-income students than schools that did not offer the SBP and suburban schools.

Weekly a la carte revenve was inversely related to overall NSLP participation rates (Brhibit 2.26). A comparison of average weekly a la carte sales for quartiles of overall NSLP participation shows that revenue ranged from a low of $\$ 383$ among schools where mean daily NSLP participation was 73 percent or marc to $\$ 2,135$ among schools where participetion rates were less than 36 peroent. This negative relationship was consistent across all school types.

Pricing Methods Used for a ie Garte Foods

SFA directors were asked about strategies used to set prices for a la carte foods. Three specific stratogies - group pricing, actual pricing, and food cost percentage markup - were asked about directly. According to SFA directors, the method most often used to price a la carte foods was group pricing or the practice of assigning a standard price to all similar foods (e.g, all snack chips, all beverages or all cookies). (See Exhibit 2.27.) Almost three-quarters of directors in SFAs where a la carte sales were reported indicatad that this pricing method was used. A roughly equivalent percentage of SFA directors (71%) reported use of an actual pricing method. Actual pricing may be used to

[^14]Exhibt 2.25
Average a la Carte Sales by Selected School Characterintics

Charseterintic	Elementary	Middle Schools	$\begin{aligned} & \text { Eifh } \\ & \text { Schools } \end{aligned}$	All Schools
	Weeldy a is Coute Salea per 1,000 Stundents			
An Scheols	5375	\$1,760	\$1,985	5913
Type of a la Carte Program				
Non-USDA items available	\$554	\$1,939	\$2,164	\$1,276
USDA-reimbursable items only	217	861	922	325
Perceat of Students Approved for Pree Lemelves				
25 percent or less	5475	\$2,150	\$2,387	\$1,282
26-50 percent	297	1,123	1,422	612
51-74 percent	371	2,547	818	682
75 percent or more	234	655	444	300
USDA Programs Offered				
NSLP only	\$521	\$2,094	\$2,503	\$1,261
NSLP and SBP	338	1,663	\$1,789	815
Commanity Type				
Urban	\$225	\$1,933	\$1,895	5822
Suburben	437	1,832	2,139	1,036
Rural	404	1,187	1,760	756
Number of Schools (Unweighted)	323	288	290	901

Note: Exhibit includes cnly sehools for which the cafeteria manager provided information on weeldy a la carte revenue and the SFA director completed hisher interview.

Sourse: Weighted tabulations of data from a meil survey of public sohool cafitaria manegers (weckly a la carle revenve) and a telepinone interviow with public SFA directors, Fill 1998 - Spring 1999.

Exhlibit 2.26

NSLP Stedeat Participation Rete and Weedty a le Carte Seles

Overall NSLP Participation Rete	Average Weeldy a la Certe Sales per 1,000 Students
Elementary Schools	
Leas then 57\%	9456
57-70\%	491
71-81\%	280
82-100\%	367
Number of Schools (Unweighted)	305
Middile Schools	
Less then 38\%	\$2,894
38-55\%	1,929
56.71\%	1,150
72-100\%	826
Nrmber of Schools (Unweighted)	285
Eiigh Schools	
Less then $\mathbf{2 1 \%}$	\$2,422
21-35\%	2,346
36-54\%	2,218
55-100\%	1,031
Number of Schools (Unweiehtec)	284
All Schools	
Less then 36\%	\$2,135
36-55\%	1,141
56-72\%	682
73-100\%	383
Number of Schools (Unweighted)	874

Notes: Beeed oa diveribution of pratioipation mates, by quertile, for eech sechool type.
Exhitit incledes only achools that offiered a la carte foods and for which information oa both perticipetios rates and weelity a le cerie reveave was avileble.

Source: Weighted telutations of deta from a mail survey of public schocl cefitoria managens (weeldy a la carte revemue and meel counts needed to calculate participation rates) and tolephone intorviows with publie SFA directors (enrollment and numbers of stuctents approved for free and redvoed-price meal bencits), Fall 1998 - Sping 1999.

Methods Used to Set Prices for a la Certe Foods

	Percentage of
Metheds	SFAs
Group pricing'	73%
Actual pricing methos ${ }^{2}$	71
Food cost percentage marlops	44
Other	8
Number of SFAs (Unweighted)	370

${ }^{1}$ The amene price is ascigned to all cimiler foods, for eramplo, all vegotables are sold at the same price per portion end all similorsized cooldies are sold at the same price.
${ }^{2}$ Prioss are deter mined by conaidering all costs of burying, producing and serving the food.
${ }^{3}$ Prioss are determinod by adding the seme peroentege malup to every food itom.
Notes: Exchitit includes only SFAs that reported use of a la cerste foods in one or more sobools.
SFAs may use more than one pricing mothod for a la ceins foods.
Source: Weighted tmbulations of deta from a telophone intorviow with publie STA dinvotors, Fell 1998 - Spring 1999.
detrmine the most appropriste group price. Use of a standard marluup was much less common, used in fower than half of the SFAs in wich a la carte sx' 3 were reported.

Use of Foods from Commercial Vendors

NSLP schools may offer foods from nutional fist-food vendors such as McDonald's, Pirza Hut, Domino's, Subway and Taco Bell, or from similer locel vendors. These commercial or "branded" foods may be served as pert of a USDA-reimbursable meel, as an a la carte item or both. Foods are generally delivered to schools prepared and ready to sarve.

In SY 1998-99, fewer than two of every 10 NSLP schools used foods from commercial vendors at hunch (Byhibit 2.28) ${ }^{13}$ Middle schools and high schools used branded foods more stiea than elementiny schools ($30-31 \%$ of middle schools and high schools versus 13% of elemeatary schools). Schools thet did use branded foods were somewhat more likoly to include these foods in reimbursable meals then to restrict them to a la carte purchases. The general pattern of use of commercially vended foods was similar for breakfast and lunch. No diffirences were detected in the use of branded foods among schools using different menu plenning options or between schools that did and did not use FSMCs.

SFA directors for almoat half of the schools that served branded foods as part of a reimburable lunch reported that one or more of the food items required a modification or reformulation to meet USDA's requirements for reimbursement (data not shown).

Use of Food Service Management Companies

In SY 1998-99, school food sarvice programs in most SFAs (88 percent) were managed by the local school district (deta not shown). The remaining 12 percent of SFAs contracted with a food service management company (FSMC) to operate one or more aspects of the food service program in one or more schools.

Functions contracted to FSMCs may be parformed solely by the FSMC or be shared between the FSMC and the SFA. In addition, SFAs may retain sole responsibility for selected aspects of the food service operation. Directors in SFAs where FSMCs were used were asked to delineate the division of labor between SFA and FSMC staff for a veriety of food service tasks. Results are tabulated in Exhibit 2.29.

In SY 1998-99, FSMCs were most often sssignad fill responsibility for menu planning and food purchasing. Approximately 70 percent of SFAs that contracted with FSMCs fully delegated these

[^15]Frotibe 2.28
Use of Foode from Commercisl Vendors ${ }^{1}$

Meal/ue of Foed Froen Commercial Vendors	Elementary Schools	Schools	$\begin{aligned} & \text { Eigh } \\ & \text { Schools } \end{aligned}$	All Schools
	Percentare of Scluols			
Lusel				
Not usod	87\%	70\%	69\%	81\%
Used for both reimbursable and a la carte lunches	2	11	14	6
Used for a la carte lunches only	1	13	12	5
Used for reimbursable hunches; a la carte hunchos not offered	5	2	3	4
Used for reimburseble lunches but not for a la carte hunches	3	4	1	3
Number of Schools (Unweighted)	409	349	351	1,109
Brealdast				
Not used	88\%	71\%	71\%	83\%
Used for both reimbursable and a la carte brealfiests	1	11	11	5
Used for a la carte breelifiets only	1	15	13	5
Used for reimbursable breakfints; a la carte brealfists not offiered	6	2	3	5
Used for reimbursable breakfints bet not for a la carte brealfints	2	2	1	2
Number of Schools (Unweightod)	332	258	263	853

${ }^{1}$ Inoludes vendors such as MoDonald'g, Pizas Hith, Domino's, Svbwey, Treo Bell, and similer looel wendors.
Note: Columns mey not sum to 100 paroent beoanse of rounding.
Sourser. Weighted tebulation of deta fiom telephone interviews with publie SFA diroctors, Fell 1998 - Spring 1999.

Divinion of Responailitity in SFAs that Use Foed Service Managenent Conpanies

Leces of Merpeneltity for Meior Foed Service Taples	Percentage of SPAs
Preparing retmbursoment clatms	
SFA	35\%
FSMC	21
Shered	44
Acoonouting and financial recordlereping	
SFA	18
FSMC	22
Shared	59
Planning menus	
SFA	21
FSMC	71
Shared	
Preparing USDA-netmbursable brealfasts	
SFA	22
FSMC	39
Shered	6
Not applicable ${ }^{2}$	33
Serving USDA-reimbursable brealfasts	
SFA	29
FSMC	32
Not eppliceble'	7 33
Preparing USDA-reimbursable hunches	
SFA	39
FSMC	47
Shared	14
Serving USDA-redmbursable lunches	
SFA	52
FSMC	36
Shered	12
Providing a la carte service	
SFA	35
FSMC	40
Shered	20
Not applicable ${ }^{2}$	5

Leces of Respomeltity for Major Pood Service Tasks	Percentage of STAs
Proviling equdpment for food preparation	
SFA	55\%
FSMC	9
Shared	36
Cafeteria cleamp	
SFA	63
FSMC	10
Shared	27
Purchasing food	
SFA	22
FSMC	69
Shared	9
Maling arrangements for using donated commodities	
SFA	20
FSMC	54
Shared	26
Selling hunch tickets and collecting hunch money	
SPA	47
FSMC	37
Shared	16
Number of SFAs (Unweighted)	51

${ }^{1}$ Includes SFAs that use a food survice managomeat compery but do not serve USDA-ceimburnabio breakimbe.
${ }^{2}$ Inchudes SFAs that uee a food service manggement compeny but do not cflir a ha certe med service.
Noter: Evaibit inoludes only SEAs that use a food servioe managomeat company- 12 peroeot of oll SFAs .
Column sections may not sum to 100 percent becouse of rounding.
Sourco: Weighted tabulations of deta from a telephone interviow with public SFA direotors, Fall 1998 - Spring 1999.
flactions. A related finction thet wes commonly contracted to FSMCs was dealing with the commodity donation progren. in more then half of SRAs with FSMCs, conlractors were solely reepossible for making arsengements for uing donsted commodity foods in NSLP and SBP moels.

Functions over which SFAs were mont likely to retain fall reeponsibility inchuded atter-meel cafteria clearap and proviting the equipment required for food preparation. FSMCs were involved in accounting and finencial recordleegings however, in clove to 60 perceat of SFAs that used a management comperyy, this fanction was shered. Mont SFAs aleo remained involved in the preperation of reinabursement claims for the NSLP and SBP. Forty-four perceat of SFAs that used FSMCs shared reeponsibility for this tank and 35 percent maintained sole reeponsibility.

Chapter Three Characteristics of Lunches Served in Public NSLP Schools

This chepter presents information on the average mutrient content of hanches served in public NSLP schools during SY 1998-99. Information is also provided on the types of food officred, the number of options availsble to studeats selecting a hunch, and the charscteristics of menls sarved to stadents. Deta sre preseated seperately for elementsy schools and secondary schools. ${ }^{1}$ In addtion, informntion is provided on differences in the average nutrient content of hunches - by mena pleaning option and by relative fit content of moels sarved.

It is importent to note that the deta presented in this chapter are not directly comperable to dera from the SNDA-I study. As described below, the results preseated in this chepter are besed on a weighted sutrient analysis. The SNDA-I study used en unweighted enslysis. A comperisco of SNDA-I and SNDA-II dese, incorporating comparable analynis of SNDA-II data, is presented in Chepter Six.

Overview of the Analysis

The data preseated in this chapter are besed on a weighted natrient analynis of huch manas and meal procluction data. A weighted analynis diffies from an unweighted analysis in that it talies into consideration not only the foods offiered to students but the mumber and types of foods that stadents actually include in the meals they solect. As such, a weighted anslysis provides a picture of the average meal served to or selected by perticipeting students and, shors of tracking food waste and actual food consumption, the best aveilsble measure of the nutritional quality of actual sochool meels. Progrem reguletions require use of a weighted mutrient enelynis in monitoring lunch menus and, for schools using a computer-based menu planing syatem, in plaming hach means. ${ }^{2}$

All analyees were completed using a customized venion of NUTRIXIDS sotwwre (LunchByte Syitems lnc.) and the third releses of USDA's Child Nutrition nutrient desebese (CN-3).' For ceach daily mean, a weighted average wes computed for celories and all targat nutrients. Daily averages were then totaled

[^16] anderide (we Cloptar Ono):

- Nutrient standarde defined ia RSLP regolations: the percentage of the RDA provided far calories, protein, vitamins A and C, celcivm, iroe and the percentage of calories from total fit sad saturntod fil
- Netionel Research Coumcil (NRC) recommendetionas mutrients for which NSLP standends have not been defined - the perceatage of calories from cribohydrate and total choletterol and sodium content.

Number and Types of Food Offered and Served to Students

Nutrieat content of NSLP meals is driven by the mix of foods offired and served to students. Therefore, before considaring data on the average matrient content of echool hunchos, it is useful to have some beckground information ca the characterintics of the mamus offered to students as well as ca students' general food seloction patterns.

Number of Optlons Oltored Whith NELP Meel Compenent Categortes

Exhibit 3.1 provides information on the relative level of choice offered to students clecting to eet ta NSLP meal. The exhibit shows the percentage of datly NSY.P momus that offered vacions numbers of options within major mean item categories ${ }^{5}$ As shown, nearly all NSLP memus provided stadents with the opportunity to select a specific type of milk: more than 95 percent of all deily NSLP mems inchuded two or more types of milk. The medim mumber of milk options, both oa a drily besis and acrose a week, was three. This pettern was genarally coasistent for elementary and secondary schools, however, secondery schools offered somowhat more choice than elementary schools.

With regerd to entrees, incioding combination entrees as well as meats/moat elibernates offired soperately, there was a notable diffirence between meaus offiered in elementary schools and those offired in secondry schools. More then one-third of elementry school means included only one entree. Such fixed menus were mach less common in secondary schools: only 15 percent of escondary school menus were limited to one entree. At the other end of the spectrum, only five percent of elementary school menus inchuded six or more entree choices, compared to 32 percent of scocondary school menns.

4 Notainat denderds ant forth in progran regikiona are defined as benchmarks for average matrient contrat figured acroes a week, enther then for ceoh deily mean. Eleven peroent of schools provided fower then five duys of mena deta, primarily beosuse of schecheled or useolveduled clocings. Ten percent provided deta for four days, and oas peroeat provided data for three daya. The denominotor used in determining the weoldy average for a givea school was the number of daye of deta provided.

5 The manu itmm cencgonies used to deveribe NSLP menus throughout this chapter are built around the meal component categocies used in the foodbosed menu planing gystems. Alhough sobools using NSMP and ANSMP are not roquired to offir the same meel components specified in food besed menu planning sytema, menus offired in these sohools are cearrily consittent with the becic elements of the food-beeed meel patterns. Thus, the bevie meel composents still provide a ueefll framowedt for doceribing NSLP meous.

Entint 3.1

Crice and Varity io Lunch Menas

	Schoole	Secemory	
	Percentage of Dolly Lemeh Memes		
1	4\%	2\%	4\%
2	35	30	34
3	36	38	36
4 ar mose	25	30	27
Modthn lumes per day	3	3	3
Narlien mumber of dillorene imme per weoly	3	3	3
Nueder of Butrees Oftrud per Day ${ }^{2}$			
1 迷	35\%	15\%	25\%
$2 \cdot 3$	44	34	40
4.5	17	19	18
6 cr more	5	32	14
Morlan mimes per clay	2	4	3
	8	10	10
Nomoretha 2	43\%	25\%	37\%
$3-4$	38	36	37
5-7	17	26	21
8 or mare	2	13	6
Mentan tums per day	3	4	3
Mentian member of diblowent tems per weak'	12	12	12
None	45\%	41\%	44\%
1	42	40	41
2	11	15	13
3 ar more	1	5	3
Mectan inims per ciay	1	1	1
Mathon mumber of ditiorsm items per weok'	3	3	3

E.atibit 3.1 (contimued)

Bementary Schools	Secondary Schools	All
Schools		

Percentage of Doily Lanch Mames

Nember of Deoserts Ofliond per Day			
None	66\%	62\%	64\%
1	30	33	31
2 ar more	4	5	5
Median inme per day	0	0	0
Modian number of dijuirent heme per week'	2	2	2
Number of Daily Merns (Unweighted)	1,948	3,304	5,252
Number of Schools (Unweighted)	398	677	1,075

${ }^{1}$ Includes only solrools thet provided meau infiommation for five daya.
${ }^{2}$ Inchudes ments and ment clitrotes as well as combination entrose.
${ }^{3}$ Fruisg and wownelos set included in combinvien eatrees.
${ }^{4}$ Orvins or luends aot inolvaded in combination entrees.
Noter Colman ecstions may not mum to 100 peroent beosuse of rounding.
Source: Whighted thlulations of mean den fir one week between September 1998 and May 1999.

The medien mumber of deily entree choices in elimentary school menux was two, compared to four for secondery schools. The median mumber of different entrees offered over the course of a week was eight for elementary schools and 10 for secondary schools. These data indicate that schools tended to repeat some entrees during the week.

A similar pattern was noted for fruit and vegetable choices. Roughly two-thirds of all NSLP meaus offered more than the two fruit and/or vegetable choices required under the food-based memu plenning systems. More than one-quarter of all memus included five or more fruit and/or vegetable choices. The availability of choice among fruits and vegetables and the number of options offered were both greater in secondary school menus than in elementary school memus.

Ovarall, the median number of different fruit and vegetable choices offered was three per day and 12 per week, indicating that both elementary schools and secondary schools offered some fruits and vegetables more than once during a typical school week.

In both elomentary schools and secondary schools, roughly forty percent of daily menus offered breads or grains only in combination entrees (c.g., bread in sandwiches, crusts on pizza, pasta in spaghetti or lasagna). Roughly the same percentage of schools officred one separate bread/grain item. A more extensive array of choices in this group was relatively rare. Only 16 percent of all daily menus included two or more separate bread/grain choices.

Finally, desserts were offered in 36 percent of all daily menus. Desserts were affered with about the same frequency in elementary and secondary school menus.

Foods Most Frequontly Included in NBLP Menus

To obtain more detailed information on the types of food offered in NSLP meals, mean items were classified into one of aeven major food groups - mill; fruit and juice; vegetables; combination catrees; separate meats/meat alternates (not part of a combination entree); separate grains/breads (not part of a combination entree); and other menu items (foods not "counted" toward any of the requirements in the food-based meal patterns). Foods were further classified into one of 81 different minor food groups. (The fill food classification scheme is shown in Exchibit E.6.) Exhibit 3.2 shows the percentage of daily meaus in which each minor food group appeared. For ease of presentation, the exhibit is limited to minor food groups that were offered in at least five percent of daily memus, overall, or for either type of school.

Noteworthy findings are summarized below:

- The type of milk most frequently offered in NSLP menus was flavored 1% milk. More than two-thirds of all daily hunch meaus included flavored 1% milk. The neart most commonly offered milks were 1%, whole and 2%, all unflavored.
- Almost ninety percent of all NSLP memus included at least one fruit or juice. Canned fruit was offered more often than either fresh fruit or juice. Camned fruit was offered in more than half of all daily menus in both elementary and secondary schools. Fresh fruit was offered in 41 percent of all meaus. Secondary school memus included fresh fruit more often than elementary school menus (50% versus 36%).

Exhibit 3.2

Foods Moat Commonly Ontered in Lanch Menas

	Eementary	Secoedary	
	Percentage of Dolly Memes in Which Hom Wha Ofineed		
M	100\%	100\%	100\%
1\% filuored	65	71	67
1\% uniavored	52	54	53
Whole unflevored	50	50	50
2\% unilevored	49	50	49
Stim unflavored ${ }^{1}$	35	42	37
Stim flavored ${ }^{\text {a }}$	16	20	17
2\% flavored	14	7	11
Frulta asd Juloes	87\%	89\%	85\%
Canned firuit	56	54	56
Freed fruit	36	50	41
Full-trength citrus juice	13	17	14
Pull-strength nce-citus juice	13	15	14
Froeza fuil or juise	7	5	6
Vegetatios	24\%	90\%	95\%
Cooked vegetables (other then potatoes and Freach fries)	41	49	44
Green saleds (other than entree saleds)	28	44	33
Oven-fied French fries/potuto products	18	30	22
Portioes other then French fries or similar poteto products	21	26	22
Rew vegetables other thea green seneds or lettuce and/or tometo	14	18	16
Leture end/or tomesor ${ }^{2}$	7	13	9
Legumes	8	9	8
Deep-fied Freech fries/potito products	3	15	7
Other (noo-green) salads	6	8	7
Other vegetable items (soups, miseed casseroles)	4	8	5
Comelonetor Petrees	90\%	96\%	92\%
Sendwiches made with cheese and/or cold cuts	20	38	26
Hemburgers and similar becfpork sendwiches	16	32	22
Peasat buther sendwiches	25	14	21
Marion-tyle entrees	15	26	1)

Brhibit 3.2
(continued)

	Elameatary Schools	Secomdary Sehools	
	Purcentage of Dally Meams in Which Hem Wes Oftered		
Comblantion Patroes (continued)			
Pizas with meat	11\%	33\%	19\%
Chef's salad and other salad plates	16	24	19
Pima without meat	12	24	16
Hot doge/com doga/similar sausage products	15	18	16
Choeseburgers and similer beefpork sencwiches	8	29	15
Panta-besed dishes	13	16	14
Sendwiches made with lean meat or poultry (no choese)	8	22	13
Sendwiches made with breeded and/or fired meet/poultry/finh (po cheess)	8	21	12
Seled bers	5	21	11
Other mived dishes/combinations	9	12	10
Sandwiches made with mayonnaisobased saleds (no choese)	7	11	8
Other food barshag funches	6	10	8
Mente/Mieat Alversates (mot part of a comblenation cetrov)	31\%	37\%	33\%
Bresded chicken nuggets/pantice/aimilar prodects	11	16	13
Oher breeded or fried meatpoultry/fish	8	10	9
Plain (not breeded or fried) meatpoultry/fish	7	9	8
Grahm/Breads (mot part of a comblation entroe)	55\%	60\%	56\%
Bread, rolls, bagels, other plain breads	29	35	31
Crackershard pretzels	11	14	12
Rice	6	9	7
Biscuits, cormbreed, croissents, other higher-fit breedefreed alternates	8	10	9
Pasta	4	5	4

Exhibit 3.2
(contimued)

	$\begin{aligned} & \text { Elamontary } \\ & \text { Schools } \end{aligned}$	Secomedary Schools	All
	Purcentage of Dollt Meams in Which Hen Was Oflored		
Other Menu Memas ${ }^{3}$	42\%	48\%	44\%
Balced desserts	19	19	19
Other desserts (non-finuited geletin, pudding, ice cream)	12	13	12
Fruit drinke/cdes	7	10	8
Deseert items that include fruit or juice	5	9	7
Snack chips	5	5	5
Number of Daily Menus (Unweighted)	1,948	3,304	5,252
Number of Schools (Unweighted)	398	677	1,075

${ }^{1}$ Includes $1 / 2$ percent milk.
${ }^{2}$ Lettuce and/or tomato offired as a vegutable choioe for all madeats. Eveludes lothuce and tomato included in propared mandwiches or offiered with other prepered entrees.
${ }^{3}$ Foods that do not contribute to satiafying the meel patterns for the traditional or enhanoed food bused menu phaming syivime.
Notes: Excribit is limited to items that eppeared in at leest five poroent of menus for at leest ose type of echool. See Exhibit E.6 for a detriled linting of items inoluded in each group.

Source: Weighted tabulations of menu deta for one week between September 1998 and May 1999.

- Ahroat all NSLP means included one or more vegetables. The most common officings were cooled vegetables, excluding Freach fries and other types of potatoes (44% of all derily mesus); followed by green salads (33\%); Oven-fiied Freach fries (22\%); potwoes other then Freoch fies or similer potsto prodects (22\%); and raw vegetables (excluding green saleds and lettuces and tomato) ($\mathbf{1 6 \%}$). Green suleds were offired more often in secondery school means then in clementary school means (44% versus 28\%).
- Deep-fiied Preach fries were rere, overill, appearing in only sevea perceat of all deily meases. Use of deep-fitiod French fries was concentruted in sccondery schools (15% versus 3\%).
- Thare were notable diffierences between clementary and secondary school meass in the frequency with which various entress were offered. In elementary schools, the mott frequently offered earress were peanut butter sandwiches (25\%); smonviches made with chesese andor cold cuts (20\%); hemburgens and similer beefpork sandwiches (excluding cheosecurgens) (16\%); Chafs suled and other salad plates (16\%); Merican-style entrees such as tacos, burritos and nachos (15%); and hot dogs, com dogs and similer samsage products (15\%). In scocondery achools, the leading eatree offerings were andwiches made with cheose and/or cold cuts (38\%); pizan with meat (33\%); hamburgers and similar boeffpork smandwiches (32\%); cheenoburgers and similar sendwiches with cheose (29%); and Mexican-style entress (26\%).
- About one in every four elementary school lunch menus included a pemant butter seandwich and about one in every three secondary school hunch menus included a sandwich made with chocese and/or cold cuts, piza with meat or a hamburger or similer beoffpork sandwich (without cheese).
- Menus in both elementry and scocodery schools moct often officed combination entrees as opposed to seperate meste/meat alternstes. Only a third of all deily NSLP menus included separate meats or meat alternates. The mott common items in this group were breeded chicken nuggess, patties and similar products and other types of breaded or fiied moet, poultry of fish.
- More than half of all derily NSLP menus offired griins or bread that were not included in a combination entree. These were moat often plain bread or rolls.
- More than 40 percent of all derily lunch meaus offered items other than those included in the bacic meal componeat eategaries. Roughly one in five hunch menus included a beled dessart such as coolies, cenbe or brownies. Twelve perceat included other deseerts such as ice cream, gelatin (without friit) or pudding. Eight percent of deily hunch menus included firuit diniss (not 100% juice) and five perceat inchuded snack chips.

Charactertetlics of Lunches Actually Served to Students

In addition to heving the ability to select specific foods within a general menu item category, students perticipeting in the NSLP have varying lovels of flexibility regarding the minimum number of foods or items they are required to talice when selecting a meal. A program rule lnown as "Offir versus Serve" (OVS) is mandeted for stedents in senior high schools and optional, at the discretion of the locai school district, for students below the senior high level. Under OVS, students in schools that are using either the traditional or enhanced food-bused syatems to plan manus have the option to refise up to two of the five food items that mast be offired for lunch - milk, mest/meat alternste, bread or grain, and two servings of fruit, vegetables or fill-strength juice. Students in schools operating under NSMP or ANSMP must select an entree and may decline additional item(8), depending on the total number of items offired.

The fact that students have more than a little latitude in dotermining what is included in their NSLP meals is a ley driver in the recent movement toward use of weighted nutrient analyses. As Exhibit 3.3 illustrates, studeats do employ these freedoms. While milk was offiered in every NSLP mems, nine percent of the hunches served to students did not include a milk. Milk was more commonly omitted in lunches served in secondery schools ($\mathbf{1 6 \%}$) than in lunches served in elementary schools (6\%).

More than 20 percent of NSLP meals served to students did not inchde the minimum two servings of fruit, vegetables or full-streagth juice auggested in both the traditional and enhanced food-besed menn planning systems. Selection of hunches that inchuded two or more servings of fruit, vegetables or juice occurred with somewhat greater frequency in elementary schools then in sccondery schools (80% vensus 74\%). Finally, when an additional grain or breed product was available (other then those included in combination entrees or served with specific mesm itenns), these items were omitted in about a quarter of the lunches served in elementary schools and more then a third of the hanches served in secondary schools.

Average Nutrient Content of Lunches Served to Students

This section presents data on the average mutrient content of hunches served to students in SY 1998-99. The mutrieat content of the average lunch, as served, is compared to the NSLP nutrition standards and NRC recommendations described in Chapter One:

- Nutrient Content Relative to RDAs. Mean contribution to RDAs for calories, protein, vitamin A, vitamin C, calcium and iron is evaluated in light of the standard defined for lunch (33\% of the RDA).
- Percentage of Calories from Total Fat and Saturated Fat. The mean percentage of calories provided by each type of fite is compared to defined NSLP standerds for total fat ($\leq 30 \%$) and seburated fite ($<10 \%$).
- Choleaterol, Sodium and Carbohydrate Content. Mean cholesterol and sodiam content are compared to NRC recommendations. The standards used reflect one-third of the NRC's recommended maximum daily intalse. The mean percentage of calories from carbokydrate is compared to the NRC recommendetion (> 55\%).

Exhibit 3.3
Characteriatics of Lanches Served to Studeats

	$\begin{aligned} & \text { Elementary } \\ & \text { Schools } \end{aligned}$	Secomdary Schools	$\stackrel{\text { All }}{\text { Seliools }}$
Charseteristic	Average Percentige of Lanches Served to Stedents		
Allumeles			
Included milk	94\%	84\%	91\%
Included combination entree or meat aliternte	100	100	100
Included two or more firits eni//or vegetables'	80	74	78
Included suparate grainfreed (when offierec) ${ }^{2}$	76	65	72
Included deweet (when ctilured)	83	63	76
Number of Deily Menus (Unweighted)	1,948	3,304	5,252
Number of Schools (Unweightad)	398	677	1,075

${ }^{1}$ Fruits and vegutables not included in combination entrees.
${ }^{2}$ Onains or breads not included in combination entreses or offired with apecific menu inem.
Source: Wcighted thbulations of meau and meel proosition data for one week between September 1998 and Mry 1999.

Meen Nutbient Content Relative to RDAs

> With the esseption of calories in secondery school hunches, NSLP hunches served to students in SY 1998-99 met or exceeded the standerd of one-third of the RDA for calorics and all target natrients (Exchibit 3.4). ${ }^{6}$

On average, hunches served to students were mitrient-dense. Elementry school hanches, for example, provided a average of 35 percent of the RDA for calories while providing more then 100 percent of the RDA for protein, more then 50 perceat of the RDAs for vitamin A, vitamin C, and calcium and 44 percent of the RDA for irco.

The pettem was similar for scoondary school hanches; however, the relative contribution to students' daily nutrient needs - always above the 33 percent RDA benchmark - was cuasistently lower. The only RDA standard that the average secondary school hunch did not satisfy was the standan' for calories. Lunches served to students in secondary schools provided, on average, 30 perceat of the RDA for calories, compared to the standard of 33 percent.

Percentage of Schools Mceting RDA Standands

In addition to examining the mean mutriest couteat of huckes served to students, in comparison to the one-third RDA standard, the analysis assessed the perceatage of individual schools that met standerds for calories and leyy nutrients. The data indicate that satisfying the calorie standard, for secondary schools especially, poses the greatest challenge to schools. More then two-thirds (68%) of elementary schools met the one-third RDA standard for calories; however, the same was true for only 20 percent of secondary schools (Exchibit 3.5). The dramatic difference between clementary schools and secondary schools is likely attributable to both the greater calorie needs of older students and the fact, as discuased above, that secondary school students were more likely than elementary school students to amit components of the offered NSLP meal (see Exhibit 3.3).

Lunches served to students in all schools met the one-third RDA benchmank for protein, which, as shown in Erchibit 3.4, was provided at levels above 100 perceat of the fall RDA in the average elementary school hunch and close to two-thinds of the RDA in the average secondary school hunch.' Lunches sarved in all or nearly all elementary schools satisfiod the RDA standerds for vitamin A, calcium and iron. The only nutrient for which an appreciable number of elementary schools fell short of the one-thind RDA benchmark was vitamin C. The average hach served in about 15 percent of elementary schools provided less then one-third of the RDA for vitamin C.

With the exception of protein, secondary schools were less likely than elementary schools to serve lunches that, on average, provided ono-thind or more of the RDA (Exhibit 3.5). As noted above, factors that may contribute to this pattem include greater mutrient needs of older students coupled with an increased tendency to omit components of the offered NSLP lunch. The average hanch sarved in roughly 15 to 20 percent of secondary schools provided less than one-third of the RDAs for vitrmin C and/or

[^17]Exhlibt 3.4 Lunches Served to Students in 8 Y 1898-99 Provided More then One-Third of the RDA, Whth the Exception of Calories in Secondary Schools

Elementary School Lunches

Secondary School Lunches

Exilbit 3.5
Percentage of Schools in Which the Average Lemeh Served to Students Provided One-Third or More of the RDA

	Flementary Schools	Secomdary Schools	$\stackrel{\text { All }}{\text { Schools }}$
	Percentage of Schools		
Calaries	68\%	20\%	51\%
Protein	100	100	100
Vitamin A	98	65	87
Vitamin C	86	79	84
Calcium	100	86	95
Iron	93	60	8
Number of Sctrools (Unweinted)	398	677	1.075

Source: Weighted autrinat untyia of moas and moel production deta for coe week between September 1998 and May 1999.
calcime. The mont limited mutriants in swoonday school hunches were vitumin A and iron. On average, lumchos served in about a thind of all secondery schools fell short of the NSLP standerd for vitamin A. Lumchas sarved in 40 percent of secondery schools fell short of the standard for iron.

Percentage of Calodes from Tctal Fet and Seturnted Fat

On average, hunches served to students in SY 1998-99 did not moet defined NSLP stendends for the percentage of calories from total fit or saturated fiat (Exchibit 3.6). Lunches sarved in elementery schools ceme somowhat clower to mecting the standard for calorics from total fat then lunches served in secondary schools. On average, hanchas served in elementery schools provided 33 percent of calories from fit (compered to the standend of no more then 30\%). Lunches served in secondary schools provided epproximately 35 percent of calcries from fit.

Lunchas served in both elementry and secondery schools exceeded the NSLP standerd for calories from saturated fiat. The average huch served in both types of schools provided about 12 percent of calorises from satureted fint, compered to the standard of less then 10 percent.

Percantage of Solools Merting Stamilenle for Fat and Scturnted Fat

Athough overall means for calories from fit and saturated fitt ewceeded establishod NSLP standards, the husches served in some individnal schools did mest these standards. Lunches served in 21 percent of all clementry schools provided no more then 30 percent of calories from fitt (Bxhibit 3.7). The percentage was 33 percent lower for secondary schools, at 14 perceat. Lumches served in 15 percent of elementary schools and 13 percent of secondry schools mot the standard for calories froms satureted fint (less then 10\%).

Cholesterol, Sedham and Carbolyydrate Content

On average, hunches served in SY 1998-99 in both elementary schools and secondery schoole satisfiod the NRC recommendetion of no more than 100 mg of cholesterol (equivaleat to ono-thind of the NRC's recommended daily maximum). (See Exchibit 3.8.) Indeed, hunches sarved in 98 perceat of all schools met this standard (Exchibit A.4).

In contrast, the meen sodium content of lunches served in both clementery schools and secondery schools exceeded the NRC recommendation (no more than 800 mg) by a subetential margin. The meen sodium content of hunches served in elementary schools was approximately 57 percent higher then the recommended lovel ($1,259 \mathrm{mg}$ versus $\leq 800 \mathrm{mg}$). Lunches served in secondary schools exceeded the recommended level by 73 percent ($1,382 \mathrm{mg}$ versus $\leq 800 \mathrm{mg}$). As the mean values suggeat, lack of comformity with the NRC recommendation for sodium content was widespread. Overall, haches sarved in only about one percent of all schools were consistent with this recommmendation (Exchibit A.4). Almont all of the schools that met this recommendation were elementary schools.

In comparison to the NRC recommendetion that more then 55 percent of all calories come from carbohydrate, humches served in both elementary schools and secondary schools were low in carbohydrate calories (Evhibit 3.8). Lunches served in both types of schools provided, on average, roughly 50 percent of calories from carbohydrate. This is not unecrpected, given the percentage of calories from fit - it is difficult to maet the recommendation for calories from carbohydrate without meeting the standard for

Exhlbit 3.6 Lunches Served to Students in 8 SYsseee Did Not Moet N3LP standards for Calorles From Fat and 8aturated Fat

Elemontary School Lunches

Secondary School Lunches

Exalltat 3.7

Distrilitution of the Percentage of Calovies frem Total Fat, Seturated Fat and Carbolyydrate in Average Lanches Served to Students

		Secomiary Schoels	
	Percentage of Schools		
Percentage of Calories frone Fat			
30.1-34.0\%	41	34	39
34.1-36.0\%	16	18	16
36.1-38.0\%	12	15	13
38.1-40.0\%	6	10	7
More then 40.0\%	5	9	6
Percentage of Calories from Saturated Fat			
		1	
10.1-12.0\%	38	36	37
12.1-14.0\%	31	36	33
14.1-16.0\%	13	13	13
More then 16.0\%	2	2	2
Percentage of Calories from Carbohydrate			
Less than 45\%	7\%	12\%	9\%
45-55\%	76	74	75
Number of Schools (Unweighted)	398	677	1,075

Coluren sections may not sam to 100 percent dee to rounding.
Source: Weighed nutrient anolyis of menu and meal prodection denta for one weok botweoa Septomber 1998 and Mry 1999.

Exhibit 3.8 Lunches Served to Students Met the NRC Recommendation for Cholesterol but Did Not Meet Recommendations for Sodium or Calories From Carbohydrate

Secondary School Lunches

calories from fat. Only 18 percent of elementary schools and 14 percent of secondary schools served lunches that were consistent with this recommendation (Exhibit 3.7).

Average Nutrient Content of Lunches Served to Students, by Menu Planning Method

As described in previous chapters, schools have a variety of menu planning options from which to choose: the traditional food-based menu planning system, the enhanced food-based menu planning system, NSMP, ANSMP and "any reasonable approach." To determine whether the choice of menu planning system influenced the nutrient content of lunches served to students, the mean nutrient content of lunches served in SY 1998-99 were compared on the basis of the menu planning system used. Because ANSMP was used in very few schools (a total of 20 schools in the unweighted sample), NSMP and ANSMP schools were combined for purposes of this analysis. Schools that reported using an alternative menu planning system (i.e., "any reasonable approach" - 36 schools in the unweighted sample) were not included in the comparisons.

Statistical significance of differences between menu planning systems was tested using two-tailed t-tests. Two comparisons were made: lunches served in schools using the traditional food-based menu planning systess were compared to lunches served in schools using NSMP or ANSMP and to lunches served in schools using the enhanced food-based menu planning system. Because of the large number of t-tests that were conducted simultaneously, a conservative cutoff was used to define statistical significance, thereby decreasing the likelihood of reporting chance findings. Only differences that were statistically significant at the one percent level $(p<.01)$ or better are reported.

With regard to meals served in schools that reported using NSMP or ANSMP, it is important to recognize that these computer-based menu planning systems may not have been fully implemented at the time data were collected. Previous research has indicated that implementation of NSMP can be a lengthy and challenging process. In a USDA-sponsored demonstration of NSMP, 16 SFAs took anywhere from three to 33 months to implement NSMP, with an average time line of 19 months (Fox 1998). Because no information is available on the status of NSMP/ANSMP implementation at the time data were collected, the comparisons discussed in the following paragraphs should be interpreted as lower-bound estimates of differences between NSMP/ANSMP and the traditional food-based menu planning system. Moreover, the absence of differences cannot be interpreted as indicative of no effect in fully implemented NSMP/ANSMP schools.

The data revealed relatively few differences in the average nutrient content of meals served in schools using the various menu planning options. ${ }^{8}$ Among elementary schools, lunches served in NSMP/ ANSMP schools provided 34 percent of the RDA for calories compared to 36 percent of the RDA for schools that used the traditional food-based menu planning system (Exhibit 3.9). Lunches served in both types of schools satisfied the one-third RDA standard for calories. In addition, lunches served in elementary schools that used the enhanced food-based menu planning system provided, on a percentage

[^18]Exhibit 3.9
Mean Nutrient Profile of Lunches Served, by Menu Pianning System, Compared to Nutrition Standards for NSLP Lunches and NRC Recommendations Elementary Schools

	Standard/ Recommendation	Menu Planning System			
		Traditional Food-Based	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMP } \end{aligned}$	Enhanced Food-Based	All Systems
Mean Percentage of RDA					
Total Calories	334	36\%	34\%*	36\%	35\%
Protein	33\%.	107	102	106	105
Vitamin A	336	67	63	72	67
Vitamin C	33:4	61	56	60	59
Calcium	33\%	58	57	58	58
Iron	33\%	45	42	44	44
Mean Percentage of Calories					
Total Fat	Esal	33.8\%	32.5\%	32.6\%	33.1\%
Saturated Fat	40:4	12.4	11.7	$11.5 \dagger$	11.9
Carbohydrate	- 554	50.8	51.9	51.8	51.4
Mean Amount					
Cholesterol (mg)	Eloer	67	63	63	65
Sodium (mg)	\&8009	1,294	1,228	1,255	1,259
Number of Schools (Unweighted)		155	108	122	398

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (7 schools).
Data for 13 schools that reported use of some other menu-planning system are not presented separatcly because of small sample size. These schools are included in the "All Systems" column.

* Difference between means for traditional food-based system and NSMP/ANSMP is statistically significant at the .01 level.
\uparrow Difference between means for traditional and enhanced food-based systems is statistically significant at the .01 level.
Source: Weighted nutrient analysis of meal and menu production data for one week between September 1998 and May 1999.
basis, fewer calories from saturated fat than lunches served in schools that used the traditional foodbased system. However, because both estimates rounded to 12 percent, lunches scrved in both types of schools failed to meet the NSLP standard of less than 10 percent of calories from saturated fat.

Among secondary schools, lunches served in schools that used the traditional food-based menu planning system provided, on a percentage basis, more calories from fat (35% versus 34%) and saturated fat (13% versus 12%) and fewer calories from carbohydrate (49% versus 51%), than lunches served in schools that used the enhanced food-based system (Exhibit 3.10). Although none of these differences affect conclusions about whether the average lunch met specific standards, the differences in means for the percentage of calories from fat, saturated fat and carbohydrate are worth noting because they moved schools in the enhanced food-based system group closer to each of the respective standards.

The percentage of schools deemed to have met the various NSLP standards and NRC recommendations used in this analysis was also compared on the basis of menu planning method (Exhibits A. 5 and A.6). The only significant difference detected was for calories among elementary schools. Elementary schools that used the traditional food-based menu planning system were more likely than elementary schools that used NSMP/ANSMP to meet the one-third RDA standard for calories (78% versus 55%). None of the differences for other nutrition standards were significant for elementary schools and no significant differences were noted for secondary schools. Thus, the type of menu planning system used did not significantly affect the likelihood that an individual school would meet the various nutrition standards.

Characteristics of Low-Fat and Higher-Fat Lunches

USDA is committed to lowering the fat content of school meals without reducing the amounts of other key nutrients provided to students. To address this concern, an analysis was undertaken to examine the impact of lower levels of fat on the overall nutrient profile of lunches served to students. The analysis also examined, in a general way, variations in menu offerings among schools in which the lunches served to students provided different levels of fat.

Schools were stratified into one of four groups based on the average percentage of calories from fat in lunches served to students:

- Schools with low-fat lunches: Mean percentage of calories from fat was less than or equal to 30 percent (the NSLP standard);
- Schools with moderate-fat lunches: Mean percentage of calories from fat ranged from more than 30 percent to 34 percent;
- Schools with high-fat lunches: Mean percentage of calories from fat ranged from more than 34 percent to 38 percent;
- Schools with highest-fat lunches: Mean percentage of calories from fat was more than 38 percent.

Exhibit 3.10
Mean Nutrient Profile of Lunches Served, by Menu Planning System, Compared to Nutrition Standards for NSLP Lunches and NRC Recommendations Secondary Schools

	Standard/ Recommendation	Menu Planning System			
		Traditional Food-Based	$\begin{aligned} & \text { NSMPI } \\ & \text { ANSMP } \end{aligned}$	Enhanced Food-Based	All Systems
Mean Percentage of RDA					
Total Calories	33\%.	30\%	30\%	30\%	30\%
Protein	13\%.	64	63	64	64
Vitamin A	\$3:	42	41	48	43
Vitamin C	53\%	52	56	55	54
Calcium	33\%	40	40	40	40
Iron	32\%	35	35	34	35
Mean Percentage of Calories					
Total Fat	sut\%	35.3\%	34.2\%	33.5\% \dagger	34.5\%
Saturated Fat	cisil	12.5	12.0	$11.7 \dagger$	12.1
Carbohydrate	-554\%	49.0	50.3	51.1 t	50.0
Mean Amount					
Cholesterol (mg)	2100\%	71	65	67	68
Sodium (mg)	S850\%	1,374	1,392	1,392	1,382
Number of Schools (Unweiphted)		282	175	197	677

${ }^{1}$ NRC recommendation, not NSLP standard.
Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (13 schools).
Deta for 23 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.
\dagger Difference between the traditional and enhanced food-based systems is statistically significant at the .01 level.
$\dagger \dagger$ Difference between the traditional and enhanced food-based systems is statistically significant at the .001 level.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Nineteen percent of all schools satisfied the NSLP standard of providing no more than 30 percent of calories from fat (Exhibit 3.7) and were thus included in the low-fat group. The largest group, the moderate-fat group, included 39 percent of all schools. Another 29 percent of schools fell into the highfat group and 13 percent of schools were in the highest-fat group.

Average Nutrient Content of Lunches by Relative Fat Content

With regard to calories and the key RDA nutrients, nutrient profiles for the average lunch offered in each type of school were very consistent. In virtually all cases, means for calories and key nutrients met or exceeded the one-third RDA standard defined for NSLP meals (Exhibit 3.11). The mean calorie level for schools in the high-fat group (32.4\%) fell just short of this standard. These data indicate that decreased levels of fat in school lunches was not associated with notable decreases in the availability of calories or key nutrients.

In fact, decreased levels of fat appear to be associated with other positive changes in school meals, namely, a smaller percentage of calories from saturated fat and a greater percentage of calories from carbohydrate. Among schools in the low-fat group, the overall mean for the percentage of calories from saturated fat (10\%) was very close to the NSLP standard of less than 10 percent.

Foods Most Commonly Offered

Exhibit 3.12 shows the relative frequency with which various food items were included in the menus offered by schools in the four relative-fat-content groups. The tabulations reflect the percentage of schools that offered the specific food or food group at least once per week. This analysis is meant to be descriptive - no statistical tests have been performed on the data. Because of small sample sizes for some of the individual cells, readers should be cautious not to over-interpret the data. Patterns observed in the data provide some insight into menu planning practices that may influence the level of fat in school lunches but should not be interpreted as fully predictive. The percentage of calories from fat in the average meal served to students is influenced by the full array of menu offerings, and by students' food selection patterns, rather than by the availability of a single item or group of items.

Below, notable differences between menu offerings in schools in the low-fat and highest-fat groups are summarized. Patterns observed for the moderate- and high-fat groups may or may not follow suit. Disparities reflect the fact that the relationship between menu offerings and relative fat content is not a simple linear relationship. The more consistent the relationship between a specific menu characteristic and relative fat content, the more important the characteristic is likely to be in determining the ultimate percentage of calories provided by fat.

- Milk: Schools in the low-fat group offered flavored milk that was made from 1% milk more often than schools in the highest-fat group. In addition, schools in the low-fat group offered whole milk and flavored milk made from 2% milk less often than schools in the highest-fat group. Schools in the low-fat group also offered flavored milk made with skim milk more often than schools in the highest-fat group.
- Fruit and Juice: Schools in the low-fat group offered fresh fruit more often than schools in the highest-fat group.

Exhibit 3.11

In Comparison to Higher-Fat Lunches, Low-Fat Lunches Provided Comparable Amounts of Calories and Key Nutrients

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1}$ Low-fiat is defined as no more than 30 percent of calories from fatt, moderato-fat as more than 30 percent up to 34 percent; high-fat as more than 34 percent up to 38 percent; and highest-fat as more than 38 percent. Schools in the low-fit group met the NSLP standard for the percentage of calories from fat.
${ }^{2}$ NRC recommendation, not NSLP standard.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit 3.12

Schools that Served Low-Fat Lunches Tended to Offer Certain Foods More Often than Schools that Served the Highest-Fat Lunches

	Relative Amount of Fat in Average Lunch, as Served ${ }^{1}$			
	Low	Moderate	High	Highest
	Percentage of Schools Oflering Item at Least Once per Week			
Milk				
1\% flavored	77\%	70\%	62\%	65\%
1\% unflavored	55	49	59	58
2\% unflavored	47	56	40	45
Whole unflavored	37	52	53	61
Skim unflavored ${ }^{2}$	32	39	47	26
Skim flavored ${ }^{2}$	24	19	17	14
2\% flavored	<1	12	21	14
Fruits and Juices				
Canned fruit	94	92	89	88
Fresh fruit	80	76	76	55
Full-strength citrus juice	24	23	18	22
Full-strength non-citrus juice	21	24	21	25
Frozen fruit or juice	20	23	21	19
Vegetables				
Cooked vegetables (other than potatoes and French fries)	96	89	84	83
Potatoes other than French fries or similar potato products	71	67	71	70
Oven-fried French fries/potato products	63	58	63	63
Green salads (other than entree salads)	54	75	75	75
Raw vegetables other than green salads or lettuce and/or tomato	44	47	45	41
Legumes	21	38	25	37
Other vegetable items (soups, mixed casseroles)	21	17	21	18
Letuce and/or tomato ${ }^{3}$	14	23	22	29
Other (non-green) salads	14	25	27	22
Deep-fried French fries/potato products	8	12	20	28
Comblnation Entrees				
Sandwiches made with cheese and/or cold cuts	60	55	77	59
Pasta-based dishes	59	60	46	45
Hamburgers and similar beeffpork sandwiches	55	57	61	50

	Relative Amount of Fat in Average Lunch, as Served ${ }^{1}$			
	Low	Moderate	High	Higheat
Comblination Entrees (continued)				
Mexican-style entrees	52\%	53\%	58\%	71\%
Pizza without meat	46	47	44	28
Pizza with meat	43	47	53	61
Hot dogs/corn dogs/similar sausage products	42	51	53	72
Sandwiches made with breaded and/or fried meat/poultry/fish (no cheese)	38	40	49	28
Sandwiches made with lean meat or poultry (no cheese)	35	32	36	26
Other mixed dishes/combinations	31	35	34	29
Peanut butter sandwiches	30	25	47	24
Food bars (other than salad bars)/bag lunches	22	9	11	9
Cheeseburgers and similar beeffpork sandwiches	21	32	56	46
Chef's salad or other salad plate	19	27	36	19
Sandwiches made with mayonnaisebased salads (no cheese)	12	17	27	14
Salad bars	7	10	21	18
Brealfast sandwiches	6	5	3	6
Meata/Meat Alternates (not part of a combination entree)				
Breaded chicken nuggets/patties/similar products	43	43	49	55
Other breaded or fried meat/poultry/fish	24	31	47	43
Plain (not breaded or fried) meatpoultry/fish	36	29	25	32
Meat/poultry/fish with mayonnaise or gravy	13	11	15	11
Yogurt	3	5	4	4
Sausage	1	3	5	10
Graina/Breads (not part of a combination entree)				
Bread, rolls, bagels, other plain breads	75	71	67	65
Crackershard pretzels	41	32	24	27
Pre-buttered bread/olls	13	20	11	10
Rice	25	28	26	25
Biscuits, combread, croissants, other higher-fat breads/bread alternates	30	37	23	33
Pastries/muffins	14	15	9	4
Pasta	9	17	16	22
Pancakes/waffles/French toast	7	2	0	1

	Relative Amount of Fat in Average Lunch, as Served ${ }^{1}$			
	Low	Moderate	High	Highest
Desserts				
Baked desserts	57\%	61\%	49\%	52\%
Other desserts (non-fruited gelatin, pudding, ice cream)	45	45	22°	26
Dessert items that include fruit or juice	30	26	15	21
Other Menu Items ${ }^{4}$				
Snack chips	14	9	16	14
Soups	13	10	4	7
Fruit drinks/ades	11	6	14	7
Condiments, Salad Dressings, and Spreads ${ }^{4}$				
Nonfat/owfat condiments	92	93	98	94
Nonfat/owfat salad dressings	38	38	36	17
Higher-fat condiments	33	50	62	53
Higher-fat spreads	31	24	37	24
Nonfatlowfat spreads	29	16	14	5
Regular salad dressings	26	58	61	68
Number of Daily Menus (Unweighted)	1,010	2,585	966	691
Number of Schools (Unweighted)	206	527	200	142

${ }^{1}$ Low-fat is defined as 30 percent or less of total calories from fatt, moderate-fat as more than 30 percent up to 34 percent; high-fiat as more than 34 percent up to 38 percent; and highest-fat as more than 38 percent. Schools in the low-fat group met the NSLP standard for the percentage of calories from fat.
${ }^{2}$ Includes $1 / 2$ percent milk.
${ }^{3}$ Lettuce and/or tomato offered as a vegetable choice for all students. Excludes letiuce and tomato included in prepared sandwiches or offered with other prepared entrees.
4 Foods that do not contribute to satisfying the meal patterns for the traditional or enhanced food-based menu planning systems.
Note: See Exhibit E. 6 for a detriled listing of items included in each group.
Source: Weighted tabulations of menu and meal production data for one week between September 1998 and May 1999.

- Vegetables: Schools in the highest-fat group offered cooked vegetables other than potatoes and French fries less often than schools in the low-fat group. Schools in the highest-fat group also offered deep-fried French fries much more often than schools in the low-fat group. Schools in the low-fat group offered legumes (most often baked beans or refried beans) and green salads (most often accompanied by dressings) less often than schools in the highest-fat group.
- Combination Entrees and Separate Meats/Meat Alternates: In comparison to schools in the highest-fat group, schools in the low-fat group offered the following items less often -Mexican-style entrees; pizza with meat; hot dogs, com dogs and similar sausage products; cheeseburgers; salad bars; and all types of breaded or fried meat, fish and poultry. At the same time, schools in the low-fat group offered pasta-based dishes; pizza without meat; and food bars and bag lunches more often than schools in the highest-fat group.
- Separate Breads/Grains: In comparison to the highest-fat group, schools in the low-fat group tended to offer bread/bread alternates outside of combination entrees more often. These items may have been available to all students or offered with a particular combination entree or meat/meat altermate and were most often lower-fat bread options, e.g., plain bread and rolls and crackers or hard pretzels. Schools in the highest-fat group offered pasta-based side dishes (most often macaroni and cheese) more often than schools in the low-fat group.
- Desserts: Schools in the low-fat group offered all types of dessert more often than schools in the highest-fat group. This finding may seem counterintuitive but, depending on the characteristics of the menu and the dessert, desserts can decrease the percentage of calories provided by fat by increasing carbohydrate calories.
- Condiments, Salad Dressings and Spreads: Schools in the low-fat group offered nonfat and lowfat salad dressings and spreads more often than schools in the highest-fat group. At the same time, schools in the highest-fat group offered regular salad dressings and higher-fat condiments more often than schools in the low-fat group.

Sources of Calories and Nutrients in NSLP Lunches as Served

To provide information on the food sources of calories and key nutrients in NSLP lunches, menu items were classified into one of six major food groups - milk; fruit, juice and vegetables; combination entrees; separate meats/meat alternates (not part of a combination entree); separate grains/breads (not part of a combination entree); and other menu items. These major food groups were expanded to 26 minor food groups. The percentage contribution of each major and minor food group to the calorie and nutrient content of the average lunch (as served) was then computed. Results are shown in Exhibit 3.13 and major findings are summarized below.

Exhibit 3.13

Sources of Calories and Nutrients in NSLP Lunches as Served

Food Gromp/Food()	Calories	Proteln	Carbohydrate	Fat	Saturated Fat	Sodium
	Percentage Contribution to Average Amount Served					
Mrilk	17.8\%	24.0\%	20.7\%	10.4\%	18.2\%	9.1\%
Whole milk	1.6	2.0	1.0	2.3	4.0	0.7
Lowfithnonfat milks	16.2	22.0	19.7	8.1	14.1	8.5
Fruits, Juices, Vegetables	16.6	7.2	25.0	10.5	8.0	11.8
Fruitjuice	6.0	1.1	11.9	0.7	0.5	0.3
Vegetables	10.6	6.1	13.1	9.8	7.5	11.5
Comblantion Entrees	39.8	50.5	29.4	48.4	51.5	48.7
Hamburgers, cheeseburgers, similar sandwiches	7.2	10.2	4.6	9.3	10.6	6.9
Hot dogs, com dogs, sausage products	2.7	2.5	1.9	4.0	3.7	4.3
Pizza	9.6	11.7	7.6	11.3	13.2	12.2
Other sandwiches	8.8	11.2	6.7	10.4	10.1	12.5
Chef's salad, salad bars, other food bars	2.6	3.2	1.9	3.3	3.3	3.4
Mixed dishes ${ }^{1}$	8.8	11.7	6.7	10.2	10.7	9.5
Meat/Meat Alternates (not part of a comblination entree)	5.4	8.9	1.9	8.5	6.6	6.2
Breaded/fried meat, poultry, fish ${ }^{2}$	4.2	6.2	1.6	6.7	5.0	4.4
Other meats/meat alte nates	1.2	2.7	0.3	1.7	1.6	1.9
Grains/Breads (not part of a combination entree)	8.2	5.1	10.6	5.8	3.9	7.7
Bread, rolls, bagels, other plain breads	3.9	2.7	5.4	2.1	1.2	3.3
Biscuits, combread, croissants, other higher-fat breads	1.9	1.1	2.1	1.9	1.2	2.0
Crackers/hard pretzels	0.6	0.3	0.8	0.4	0.2	0.8
Pastries/muffins	0.6	0.3	0.8	0.5	0.3	0.4
Pasta/rice	1.1	0.7	1.3	0.9	0.8	1.3
Pancakes, waffles, French toast	0.1	0.1	0.1	0.1	0.0	0.1

Exhibit 3.13
(continued)

Food Group/Food()	Calories	Protelin	Carbohydrate	Fat	Saturated Fat	Sodium
	Percentage Contribution to Average Amount Served					
Other Menu Items ${ }^{3}$	12.3	4.3	12.5	16.4	11.8	16.4
Desserts	5.8	2.0	7.4	5.4	5.0	2.7
Snack Chips	0.4	0.1	0.3	0.6	0.4	0.3
Fruit drinks/ades	0.5	0.0	1.0	0.0	0.0	0.1
Miscellaneous	1.1	1.2	0.7	1.5	2.1	2.8
Nonfatlowfat condiments and spreads	1.5	0.6	2.5	0.9	0.3	7.9
Nonfatlowfat salad dressings	0.4	0.1	0.3	0.6	0.3	1.0
Higher-fat condiments and spreads	1.5	0.2	0.1	4.4	2.2	0.7
Regular salad dressings	1.1	0.0	0.2	2.9	1.4	1.0

Exhibit 3.13
(continued)

Food Group/Food(g)	Cholesterol	Vitamin \mathbf{A}	Vitamin C	Calcium	Iron
	Percentage Contribation to Average Amount Served				
M ${ }^{\text {m }}$	14.6\%	30.0\%	7.2\%	53.9\%	8.6\%
Whole milk	3.7	1.4	0.6	4.6	0.2
Lowfathonfat milk	10.8	28.6	6.6	49.3	8.4
Fruits, Juices, Vegetables	2.1	41.4	66.8	5.6	16.8
Fruitjuice	0.1	2.6	37.4	1.6	4.3
Vegetables	2.0	38.8	29.5	4.0	12.5
Combination Entrees	57.6	20.0	13.1	31.9	49.5
Hamburgers, cheeseburgers, similar sandwiches	12.1	1.5	0.8	4.2	10.4
Hot dogs, com dogs, sausage products	4.2	0.2	0.2	0.9	3.2
Pizas	8.8	5.6	1.4	13.0	11.1
Other sandwiches	13.4	2.5	0.7	6.1	10.1
Chef's salad, salad bars, other food bars	5.2	4.9	3.4	2.1	2.9
Mixed dishes ${ }^{1}$	13.9	5.2	6.4	5.6	11.9
Meat/Meat Alternates (not part of a combination entree)	14.2	0.8	0.4	1.0	4.9
Breaded/fried meat, poultry, fish ${ }^{2}$	10.2	0.5	0.2	0.7	3.6
Other meats/meat alternates	4.0	0.3	0.3	0.3	1.4
Graina/Breads (not part of a combination entree)	2.3	1.4	0.9	3.4	12.1
Bread, rolls, bagels, other plain breads	0.2	0.1	0.0	1.6	6.6
Biscuits, combread, croissants, other higher-fat breads	0.9	0.5	0.1	0.9	2.4
Crackershard pretzels	0.0	0.0	0.0	0.1	1.0
Pastries/muffins	0.4	0.1	0.0	0.2	0.8
Pasta/rive	0.6	0.7	0.7	0.6	1.3
Pancakes, waffles, French toast	0.1	0.0	0.0	0.0	0.1

Exhibit 3.13 (continued)

Food Group/Food(0)	Cholesterol	Vitamin \mathbf{A}	Vitamin C	Calctum	Iron
	Percentare Contribution to Average Amount Served				
Other Menn Iteme'	9.2	6.4	11.6	4.3	8.1
Desserts	4.2	2.5	2.2	1.9	4.0
Snack chips	0.0	0.0	0.3	0.1	0.2
Fruit drinks/ades	0.0	0.1	4.8	0.2	0.2
Miscellaneous	1.8	1.1	1.1	1.3	1.1
Nonfat/lowfat condiments and spreads	0.2	1.5	3.0	0.6	2.2
Nonfathowfat salad dressings	0.2	0.1	0.0	0.1	0.0
Higher-fat condiments and spreads	1.4	0.9	0.0	0.1	0.2
Regular salad dressings	1.3	0.2	0.0	0.1	0.1

[^19]Columns may not sum to 100 percent because of rounding.

Calories

The major source of calories in NSLP lunches served in SY1998-99 was combination entrees, which provided about 40 percent of total calories. Major contributors included pizza; sandwiches; mixed dishes; and hamburgers, cheeseburgers and similar beef/pork sandwiches. Milk, primarily in the form of lowfat milks, made the second largest contribution to total calories (18\%). Fruit, juice and vegetables contributed 17 percent of total calories; and other menu items, including desserts, salad dressings, condiments, spreads and other extras contributed more than 10 percent of total calories. Most of the calories in the latter group came from desserts (6%) and high-fat salad dressings, condiments and spreads (3\%).

Carbohydrate

Combination entrees were also the leading source of carbohydrate in school lunches (29\%). Leading carbohydrate contributors in this group included pizza, sandwiches and mixed dishes. Fruit, juice and vegetables were the second leading source of carbohydrate in school lunches (25\%). Roughly equivalent proportions of the total were contributed by fruit and juice and by vegetables. The third major contributor of carbohydrate in school lunches was milk (21\%).

Total Fat

Almost half of the fat in school lunches served in SY1998-99 came from combination entrees. Major contributors included pizza, sandwiches and mixed dishes. Other menu items (items that don't contribute to meeting meal pattem requirements) contributed roughly 16 percent of the fat in the average school lunch. Most of this fat was concentrated in high-fat salad dressings, condiments and spreads (7%) and in desserts (5\%). Fruit, vegetables and juice - as a group - contributed about 11 percent of total fat. Virtuaily all of this fat came from vegetables. Additional analyses (not shown) documented that most of this fat was contributed by French fries and other processed potato products.

Saturated Fat

More than two-thirds of the saturated fat in school lunches was contributed by combination entrees (52%) and by milk (18%). Other memu items contributed 12 percent of the saturated fat. Major contributors included high-fat salad dressings, condiments and spreads (4\%) and desserts (5\%). Separate meats and meat alternates, which were offered relatively infrequently (see Exhibit 3.2), contributed about seven percent of the saturated fat.

Sodium

Together, combination entrees (49\%) and other menu items (16\%) accounted for 65 percent of the sodium in the average school lunch. Condiments, spreads and salad dressings alone (all types) contributed 11 percent of the total sodium. Fruit, juice and vegetables were the third major source of sodium, contributing about 12 percent of the total. Virtually all of the sodium from this group came from vegetables.

Cholesterol

The leading source of cholesterol in NSLP lunches served in SY 1998-99 was combination entrees, which contributed close to 60 percent of the cholesterol in the average lunch. Major contributors included mixed dishes; sandwiches; and hamburgers, cheeseburgers and similar beef/pork sandwiches. Milk and meats and meat alternates (primarily breaded or fried meat, poultry or fish) each contributed about 14 percent of the cholesterol in the average lunch.

Vtamin A

Fruit, juice and vegetables were the major contributors of vitamin A in school lunches (41\%). The majority of this vitamin A came from vegetables. Milk was the second leading contributor of vitamin A, supplying 30 percent of the total. Combination eatrees contributed 20 percent of the vitamin A. Major contributors in this group included pizza; mixed dishes; and Chef's saleds, salad bars and other food bars.

Vitamin C

Fruit, juice and vegetables were also the primary source of vitamin C in school lunches, contributing more than two-thirds of the vitamin C in the average lunch. Thirty-seven percent of the vitamin C was contributed by fruit and juice and 30 percent was contributed by vegetables. Fruit drinks and ades contributed about five percent of the vitamin \mathbf{C}.

Calcium

Milk provided more than half of the calcium in the average school lunch. Combination entrees provided almost a third of the calcium, primarily from pizza, sandwiches and mixed dishes.

Iron
Half of the iron in the average school lunch was contributed by combination enirees. Fruit, vegetables and juice contributed another 17 percent of the total iron, with the majority (13\%) coming from vegetables. Separate grains and breads contributed 12 percent of the total iron.

Chapter Four
 Characteristics of Breakfasts Served in Public SBP Schools

This chapter presents information on the average mutrient content of breakfasts served in public SBP schools during SY 1998-99. Information is also provided on the types of food offered, the number of options available to students selecting a brealfast and the characteristics of breakfasts served to students. In addition, information is provided on variation in nutrient content by menu planning system and by relative fat content.

The general approach to data analysis and reporting in this chapter is identical to that used in the preceding chapter on the characteristics of school lunches. The data presented are based on a weighted nutrient analysis and are therefore not directly comparable to data from the SNDA-I study (which are based on an unweighted analysis). A comparison of SNDA-I and SNDA-II data, completed using comparable analytic techniques for the two data sets, is presented in Chapter Six.

Number and Types of Food Offered and Served to Students

This section provides background information on the characteristics of the breakfast menus offered to students as well as on students' general food selection patterms.

Number of Options Offered Within SBP Meal Component Casegories

Information on the relative amount of choice available to students selecting an SBP breakfast is summarized in Exhibit 4.1. The exhibit shows the percentage of daily SBP menus that offered various numbers of options within major menu item categories. ${ }^{1}$ More than eight out of 10 daily SBP menus provided students with the opportunity to select a specific type of milk; the remainder offered only one type of milk. This pattern is noticeably different from that observed for NSLP lunches, where 96 percent of all daily menus offered at least two milk choices (see Chapter Three). The primary reason for this difference is that fewer schools offered flavored milk at brealcfast.

More than half of all SBP menus offered a choice of fruit, juice or vegetable (more than one). Secondary school menus tended to have more options in this category than elementary school menus. Sixteen percent of daily secondary school menus included four or more fruit, juice or vegetable options, compared to 10 percent of elementary school menus. Almost half of all elementary school memus were limited to

[^20]Exhibit 4.1
Choice and Variety in Brealfast Menus

	Elementary Schools	Secondary Schools	All Schools
	Percentage of Daily Brealfast Menus		
Number of Types of Milic Oftered per Day			
1	18\%	17\%	18\%
2	42	32	38
3	30	32	31
4 or more	10	19	13
Median items per day	2	3	3
Median number of different items per week'	2	3	3
Number of Frsits/Juksea/Vegetables Oftered per Day			
1	49\%	40\%	46\%
2	21	23	21
3	20	21	20
4 or more	10	16	12
Median items per day	2	2	2
Median number of different items per week ${ }^{\text {L }}$	3	3	3
Number of Comblastion Entrees Oflered per Day			
None	71\%	55\%	66\%
1	27	33	29
2 or mare	3	12	6
Median items per day	0	0	0
Median number of different items per week'	1	1	1
Number of Separate Breada/Grales Oftered per Day ${ }^{2}$			
None	7\%	7\%	7\%
1	26	22	25
2	37	26	33
3	22	21	21
4-5	7	16	10
6 or more	2	8	4
Median items per day	2	2	2
Median number of different items per week ${ }^{\text {² }}$	6	6	6

Exhibit 4.1
(continued)

| | Elementary
 Schools | Secondary
 Schools | All
 Schools |
| :--- | :---: | :---: | :---: | :---: |
| | Percentage of Daily Brealdast Menus | | |
| Number of Separate Meat/Meat Alternates Ottered per Day | | | |
| None | 74% | 68% | 72% |
| 1 | 24 | 25 | 24 |
| 2 or more | 3 | 7 | 4 |
| Median items per day | 0 | 0 | 0 |
| Median number of different items per week' | 1 | 1 | 1 |
| Number of Daily Menus (Unweighted) | 1,551 | 2,371 | 3,922 |
| Number of Schools (Unweighted) | 317 | 487 | 804 |

${ }^{1}$ Includes only schools that provided menu information for five days.
${ }^{2}$ Not included in combination entrees. All cold cereals counted as one choice.
Source: Weighted tabulations of menu data for one week between September 1998 and May 1999.
one fruit, juice or vegetable offering, compared to 40 percent of secondary school menus. For all schools, the median number of fruit, juice or vegetable choices offered per day was two. Across a week, schools offered a median of three different items in this category, indicating that some items were offered more than once per week.

Breakfast menus differed from lunch menus in that combination entrees were not the norm. As shown in Exhibit 4.1 , more than 70 percent of all elementary school menus and more than half of all secondary school menus included no combination entrees. When entrees were offered, there was generally only one such item available. However, 12 percent of secondary school menus did offer two or more combination entrees.

The main focal point of most breakfast menus was breads and bread alternates (e.g., tonst, bagels, cereal, pastries, muffins, pancales or waffles). More than two-thirds of all daily breakfast menus included two or more bread or grain products (all types of cold cereal were considered one choice). More than a third of all menus included three or more choices. Secondary school menus offered the greatest number of options in this category; 24 percent of all daily breakfast menus in secondary schools included four or more breads or bread alternates.

Across all schools, the median number of daily bread/bread alternate choices was two and the median number of different items offered across the week was six. In considering these data, it is important to bear in mind that students were often expected to select two bread or grain items (e.g., cereal and toast) to satisfy requirements for a reimbursable meal.

Seventy-two percent of all daily breakfast menus included no meat or meat alternate items (other than those that might have been included in a combination entree). When such items were offered, there was generally only one option available.

Foods Most Frequently Included in 8BP Menus

To obtain more detailed information on the types of food offered in SBP meals, menu items were classified into one of six major food groups - milk; fruit, juice and vegetables; grains and breads; meats/mest alternates; combination entrees; and other menu items (foods not "counted" toward component requirements in food-based meal patterns). Foods were further classified into 29 minor food groups.

Exhibit 4.2 shows the percentage of daily menus in which each major and minor food greap was offered. The exhibit is limited to minor food groups that were offered in at least five percent of dilily menus, overall, or for either type of school. Major findings are summarized below:

- The type of milk most frequently offered in SBP menus, in both elementary schools and secondary schools, was unflavored 1% milk. (The leading milk option in lunch menus was flavored 1% milk). The next most commonly offered milks were whole milk, 2% (unflavored) milk and flavored 1% milk.

Exhibit 4.2
Foods Most Commonly Offered in Brealfast Menus

	Elementary Schools	Secondary Schools	All Schools
	Percentage of Daily Menus in Which Item Was Offered		
Milk	100\%	100\%	100\%
1\% unflavored	55	56	56
Whole unflavored	49	48	49
2\% unflavored	46	45	46
1\% flavared	42	53	46
Skim unflavored ${ }^{1}$	23	29	25
Skim flavored ${ }^{1}$	8	16	11
2\% flavored	8	4	7
Frults, Juices and Vegetables	99\%	99\%	99\%
Full-strength citrus juices	65	81	71
Full-strength non-citrus juices	56	56	56
Fresh fruit	16	19	17
Camned fruit	17	11	15
Potatoes (all types)	3	6	4
Grains/Breads (not part of a cemblation entree)	93\%	93\%	93\%
Cold cereal	70	71	70
Bread, rolls, bagels, other plain breads	18	30	22
Douuts, Danish, other pastry	28	37	31
Pencakes, waffles, French tosast	19	22	20
Muffins, sweetquick breads, cereal bars	16	19	17
Buttered toast, bagels with cream cheese	22	17	20
Biscuits, cornbread, croissants	8	14	10
Crackers ${ }^{2}$	10	7	9
Meats/Meat Alternates (not part of a combination entree)	26\%	32\%	28\%
Sausage	10	15	12
Eggs	5	6	6
Yogurt	4	7	5
Cheese	5	2	4

Exhibit 4.2
(continued)

	Elementary Schools	Secondary Schools	All Schools
	Percentage of Daily Menus in Which Item Was Offered		
Comblnation Entrees	29\%	45\%	34\%
Brealfast sandwiches	14	26	18
Pizza (all types)	8	13	10
Seusage with pancake and similar products	4	6	5
Mexicmi-style entree	2	7	4
Other Mean Items	2\%	6\%	4\%
Fruit drinks/ades	1	5	2
Number of Daily Menus (Unweighted)	1,551	2,311	3,922
Number of Schools (Unweighted)	317	487	804

Noter: Exhibit is limited to items that appeared in at least five percent of menus for at least one type of school. See Exhibit E. 6 for a detailed listing of items included in esch group.
${ }^{1}$ Includes $1 / 2$ percent milk.
${ }^{2}$ Generally graham crackers or alltines that could be coupled with peanut butter or cheese.
${ }^{3}$ Foods that do not contribute to satisfying the meal patterns for the traditional or enhanced food-besed menu planning systems.
Source: Weighted tabulations of menu data for one week between September 1998 and May 1999.

Flavored milks were offered more often in secondary schools than in elementary schools. Fifty-eight percent of breakfast menus in elementary schools included one or more types of flavored milk compared to about 73 percent of secondary school menus. ${ }^{2}$

- The most common offering in the fruit, juice and vegetable category was juice. Citrus juice was offered more frequently than non-citrus juice. Sixty-five percent of all elementary school menus and 81 percent of all secondary school menus included one or more citrus juices. Just over half of all menus included non-citrus juice.
- Fruit was offered in breakfast menus much less frequently than juice. Fresh fruit was offered in fewer than 20 percent of all menus. The same is true for canned fruit. Potatoes were offered in fewer than five percent of all menus, most commonly at the secondary school level.
- Cold breakfast cereals were a mainstay of breakfast menus, appearing in roughly seven out of 10 menus in both elementary and secondary schools. Other breads and grains were offered with much less frequency. More than one in five breakfast menus included bread/ toast, bagels, English muffins or other plain breads. About 30 percent included pastries such as Danish, doughnuts, sweet rolls and the like. Pancakes, waffles or French toast were used in one out of five breakfast menus.
- Meats and meat alternates were infequently offered as a discrete memu item (rather than as part of a combination entree). Separate meats or meat altermates were included in only 28 percent of all breakfast menus. Secondary school menus included meats and meat alternates more often than elementary school menus. Sausage was the item offered most frequently.
- Combination eatrees were more common in secondary school menus than in elementary school menus (45% versus 29%). In all cases, the most common type of entree offered was a breakfast sandwich similar to those served in fast food restaurants (e.g., eggs with some combination of cheese and/or bacon, sausage or ham on an English muffin, bagel or biscuit). Other combination entrees that appeared in at least five percent of daily menus inchuded pizza (10\%) and pancake-wrapped sausages or similar products (5\%).
- The only non-creditable memu item used with any frequency in breakfast menus was fruit drinks. These were used primarily in secondary schools and appeared in only five percent of those menus.

Characteristics of Breakfasts Actually Served to Students

In addition to having the ability to select specific foods within a meal component category, students participating in the SBP have varying levels of flexibility regarding the minimum number of foods or items they are required to take when selecting a meal. In general, however, students have fewer options in this regard at breakfast than they do at lunch. In the SBP, unlike the NSLP, the "Offer-versus-Serve" (OVS) option (see Chapter Three) is not mandatory for secondary schools. OVS is optional, at the discretion of the local school district, at all school levels.

[^21]When OVS is implemented in schools using the traditional or enhanced food-based memu planning systems, students may refuse one of the four food items that must be offered (milk; fruit, juice or vegetable; two servings of grain/bread or meat/meat alternate or one of each). In schools using NSMP or ANSMP, which are required to offer at least three menu items (one of which must be milk), students may decline a maximum of one of the offered menu items.

As Exhibit 4.3 illustrates, the makecup of breakfasts served to students did vary from the full complement of foods included in the traditional and enhanced meal patterns. While milk was offered in every SBP menu, about 10 percent of the breakfasts served to students on an average day did not include milk. Milk was more commonly omitted in breakfasts served in secondary schools than in breakfasts served in elementary schools (14% versus 8%). This pattern is essentially identical to that observed for lumches (see Chapter Three).

On average, 88 percent of students who had an opportunity to include a serving of fruit, juice or vegetable in their SBP breakfast did so. The vast majority of breakfasts served to students included two or more servings of bread or grain and/or meat/meat alternate. However, a small percentage of breakfasts did not. It is important to note that students do not necessarily have to select two menu items to obtain two servings of bread/grain and/or meat/meat alternate. Many bread products are of sufficient size or weight to qualify for two servings of bread/grain, e.g., a full bagel or a full English muffin. The same is true for most brealfiast sandwiches and other combination entrees.

Average Nutrient Content of Breakfasts Served to Students

This section presents data on the average nutrient content of breakfasts served to students in SY 1998-99 in comparison to defined SBP nutrition standards and NRC recommendations. The discussinn is divided into three sections as outlined below.

- Nutrient Content Relative to RDAs. Mean contribution to RDAs for calories, protein, vitamin \mathbf{A}, vitamin \mathbf{C}, calcium and iron is evaluated in light of the defined nutrient standard for breakfist (25% of the RDA).
- Percentage of Calories from Total Fat and Saturated Fat. The mean percentage of calories provided by each type of fat is compared to defined SBP standards for total fat ($\leq 30 \%$) and saturated fat ($<10 \%$).
- Cholesterol, Sodium, and Carbohydrate Content. Mean cholesterol and sodium content are compared to NRC recommendations. The standards used reflect one-fourth of the NRC's recommended maximum daily intake. The mean percentage of calories from carbohydrate is compared to the NRC recommendation ($>55 \%$).

Exhibit 4.3
Characteristics of Brealfasts Served to Students

.	Elementary Schools	Secondary Schools	All Schools
Characteristic	Average Percentage of Brealfasts Served to Students		
All Brealcasts			
Included milk	92\%	86\%	90\%
Inchuded at least one fruit, juice, or vegetable (when offered)	89	86	88
Included two servings of bread, two servings of meat, or one of each	97	99	98
Number of Derily Menus (Unweighted)	1,551	2,311	3,922
Number of Schools (Unweighted)	317	487	804

Source: Weighted tabulations of menu and meal production data for one week between Seplember 1998 and May 1999.

Mean Nutrient Content Relative to RDAs

SBP breakfasts served in SY 1998-99 met or exceeded the SBP standard of one-fourth of the RDA for all target nutrients (Exhibit 4.4).3 Average calorie levels fell below the one-fourth RDA benchmark, however, ranging from 20 percent of the RDA for secondary school brealfasts to 23 percent for elementary school breakfasts.

Breakfasts were nutrient-dense, although not quite as dense as lunches. This is not unexpected given the more limited array of foods offered in brealfast menus. Elementary school breakfasts provided an average of 23 percent of the RDA for calories while providing more than 35 percent of the RDAs for all key mutrients. Breakfasts served to secondary school students provided 20 percent of the RDA for calories and 25 percent or more of the RDA for all key mutrients. SBP brealfasts were especially rich in Vitamin C, providing 81 percent of the RDA for elementary school students and 72 percent of the RDA for secondary school students.

Percentage of Schools Meeting RDA Standards

Data on the percentage of schools that satisfied the one-fourth RDA standard for calories and targeted nutrients underscore the fact that the calorie standard was difficult to meet. Overall, the average breakfast served in more than $\mathbf{8 0}$ percent of all schools provided less than one-fourth of students' daily energy needs (i.e., fewer than 20 percent of all schools met the SBP standard for calories). (See Exhibit 4.5.) The difficulty was most pronounced in secondary schools, where students' calorie needs are greatest. The percentage of secondary schools in which the average brealfast served to students satisfied the SBP standard for calorizs (8\%) was about a third that of elementary schools (22\%).

Breakfasts served in almost all schools (more than 90\%) met the one-fourth RDA benchmark for protein, vitamin C, and calcium. However, fewer secondary schools than elementary schools met the standard for calcium (78% versus 99%). This is consistent with the finding, noted in Exhibit 4.3 , that secondary school students were more likely to select a breakfast that did not include milk.

A smaller percentage of schools (about 80\%) satisfied the SBP standards for vitamin A and iron, both of which tend to occur in concentrated amounts in a relatively limited number of foods. Again, the percentage of secondary schools that satisfied these standerds was substantially lower than the percentage of elementary schools (Exhibit 4.5). Mean levels of these mutrients were roughly comparable across all school types (Exhibit B.1); however, the RDAs for middle school and high school students are greater.

It should also be noted that the RDA-based standards used in this analysis are based on the grads span of the children earolled in each school (see Appendix E), a standard that provides the most accurate assessment of how well the meals served meet students' nutritional needs. Under the regulations, secondary schools are permitted to serve breakfasts that meet less-stringent criteria (i.e., minimum nutrition standards defined for all children in grades $\mathrm{K}-12$). When minimum SBP nutrition standards are used as a benchmark, the percentage of secondary schools deemed to have met the various RDA

[^22]Exhibit 4.4 Breakfasts Served to Students in SY 1998-99 Provided at Least One-Fourth of the RDA, With the Exception of Calories

Elementary School Breakfasts

Secondary School Broakfasts

Exhibit 4.5

Percentage of Schools in Which the Average Brealfast Served to Students Provided One-Fourth or More of the RDA
$\begin{array}{lccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 2 - 4 } \& \& Percentage of Schools\end{array}$]$

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.
standards is greater and, for some nutrients, the percentage of elementary schools is lower (see Exhibit B.3).

Percentage of Calories from Total Fat and Saturated Fat

On average, breakfasts served in SY 1998-99 in both elementary and secondary schools met the SBP standard for the percentage of calories from total fat (Exhibit 4.6). In addition, average breakfasts came close to meeting the SBP standard for calories from saturated fat. The average breakfast served to SBP participants provided between 27 percent (elementary schools) and 28 percent (secondary schools) of calories from fat (compared to the standard of no more than 30\%). Breakfasts provided roughly 10 percent of calories from saturated fat (compared to the standard of less than 10\%).

Percentage of Schools Meeting Standards for Fat and Saturated Fat

On average, breakfasts served in 71 percent of all schools met the SBP standard for the percentage of calories from fat (Exhibit 4.7). Elementary schools met the standard more often than secondary schools (75% versus 64%). The average percentage of calories from fat exceeded 34 percent in about 10 percent of elementary schools and 15 percent of secondary schools.

Although overall means exceeded the SBP standard for the percentage of calories from saturated fat (Exhibit 4.6), some individual schools did meet this standard. This was true, in fact, for more than half of all schools. Breakfasts served in elementary schools met the standard for calories from saturated fat more often than brealfasts served in secondary schools (54\% versus 46\%).

Cholesterol, Sodium and Carbohydrate Content

On average, breakfasts served in SY 1998-99 in both elementary schools and secondary schools provided less then 75 mg of cholesterol, a level that is consistent with the NRC recommendation of no more than 75 mg (or no more than one-quarter of the suggested maximum daily intake). (See Exhibit 4.8.) Eighty-five percent of all schools met this standard (Exhibit B.4).

The average brealfast served in elementary schools also satisfied the NRC recommendation for sodium (574 mg versus no more than 600 mg). Brealfasts served in secondary schools came close to meeting the NRC recommendation for sodium (672 mg). Only 42 percent of secondary schools met the NRC recommendation for sodium content, compared to 63 percent of elementary schools (Exhibit B.4).

Finally, breakfasts provided, on average, 59 percent (secondary schools) to 62 percent (elementary schools) of calories from carbohydrate. This compares favorably to the NRC recommendations of more than 55 percent of calories. Roughly eight out of 10 SBP schools met the NRC recommendation for calories from carbohydrate (Exhibit 4.7). Again, elementary schools met the recommendation more often than secondary schools (82% versus 72%).

Exhlbit 4.6 Breakfasts Served to Students in SY 1998-99 Met the SBP Standard for Calories From Fat and Almost Met the Standard for Calories From Saturated Fat

Elementary School Breakfasts

Secondary School Breakfasts

Exhibit 4.7

Distribution of the Percentage of Calories from Total Fat, Saturated Fat, and Carbohydrate in Average Brealcasts Served to Students

$\begin{array}{lccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 3 - 5 } \& \& \& Percentage of Schools\end{array}$]$

Note: Highlighted rows show SBP standerd (fit and saturated fitt) or NRC recommendation (carbohydrate).
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhlbit 4.8 Breakfasts Served to Students Met NRC Recommendations for Cholesterol and Calories from Carbohydrate but Did Not Consistently Meet the Recommendation for Sodium

Secondary School Breakfasts

Average Nutrient Content of Breakfasts Served to Students, by Menu Planning Method

To determine whether the choice of menu planning system influences the nutritional quality of breakfasts served to students, mean nutrient content of breakfasts served in SY 1998-99 was compared on the basis of the menu planning system used. Because ANSMP was used in very few schools (a total of 15 schools in the unweighted sample), NSMP and ANSMP schools were combined for purposes of this analysis. Schools that reported using an alternative menu planning system (31 schools in the unweighted sample) were not included in the comparisons. Statistical significance of differences between menu planning systems was tested using two-tailed t-tests. Two comparisons were made: breakfasts served in schools using the traditional food-based menu planning system were compared to (a) breakfasts served in schools using NSMP or ANSMP and (b) breakfasts served in schools using the enhanced food-based menu planning system.

As noted in Chapter Three, readers are cautioned to recognize that NSMP/ANSMP systems may not have been fully operational at the time data were collected. ${ }^{4}$ Previous research has shown that implementing NSMP can be a lengthy and complicated process, taking anywhere from three to 33 months (Fox 1998). Thus, differences observed between the traditional food-based menu planning system and NSMP/ANSMP should be interpreted as lower-bound estimates. Moreover, the absence of differences cannot be interpreted as indicative of no effect in fully implemented NSMP/ANSMP schools.

Exhibits 4.9 and 4.10 present information on the mean nutrient content of breakfasts served in schools using the various menu planning options. Breakfasts served in schools that used NSMP/ANSMP derived significantly fewer calories from saturated fat than breakfasts served in schools that used the traditional food-based menu planning system. This was true for both elementary schools and secondary schools. Breakfasts served in schools that used NSMP/ANSMP were consistent with the SBP standard of less than 10 percent of calories from saturated fat. In contrast, brealfasts served in schools that used the traditional food-based menu planning system derived roughly 11 percent of calories from saturated fat, a level which exceeds the SBP standard.

In comparison to brealfasts served in schools that used the traditional food-based menu planning system, NSMP/ANSMP schools also provided a smaller percentage of the RDA for calories (elementary schools only), a smaller percentage of calories from fat, a greater percentage of calories from carbohydrate (secondary schools only), and less sodium (elementary schools only).

On average, breakfasts served in both NSMP/ANSMP and traditional food-based system schools met most of the relevant standards. However, neither group of schools met the one-fourth RDA standard for calories. Of the statistically significant differences between NSMP/ANSMP schools and traditional food-based system schools reported above, two differences affected conclusions about the extent to which brealfasts satisfied SBP nutrient standards or NRC recommendations. Specifically, breakfasts

[^23]Eshibit 49
Mean Nutrient Profile of Brealfasts Served, by Menu Planning System, Compared to Nutrition Standards for SBP Brealffasts and NRC Recommendations Elementary Schools

	Standard Recommeadation	Meau Planning Syatem			
		Traditional Food-Based	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMPP } \end{aligned}$	Enhanced Feod-Based	All
Mean Percentage of RDA					
Total Calaries		23\%	21\%**	23\%	23\%
Protein		54	49	54	52
Vitamin A		38	40	38	39
Vitamin C	.	81	81	84	81
Calcium		43	41	44	43
Iron		37	38	38	37
Mean Perceatage of Calories from.					
Total Fat		27.6\%	24.4\%*	26.8\%	26.5\%
Saturated Fat		10.7	9.1**	10.2	10.1
Carbohydrate		60.3	63.6	61.1	61.5
Mean Amount					
Cholesterol (mg)	\%	51	36	38	43
Sodium (mg)	3	605	528**	578	574
Number of Schools (Unweighted)		128	83	93	317

${ }^{1}$ NRC recommendetion, not SBP standerd.
Notes: Deta for NSMP and ANSMP were combined because of extremely amall sample size for ANSNP (5 schools).
Dia for 13 schools that reported use of some other menu-planning system are not presented separately becsuse of small sample size. These schools are included in the "All Systems" column.

- Difference between the traditional food-based system and NSMP/ANSMP is statistically significant at the .01 level.
** Difference between the traditional food-based syitem and NSMMP/ANSMP is statistically significant at the .001 level.
Source: Weighted nutrient analysis of meal and meau production data for one week between September 1998 and May 1999.

Exhibit 4.10

Mean Nutrient Profile of Brealfasts Served, by Menu Planning System, Compared to Nutrition Standards for SBP Brealfasts and NRC Recommendations Secondary Schools

	Standard/ Recommeadotion	Menu Planning System			
		Traditional Food-Based	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMP } \end{aligned}$	Enhanced Food-Based	$\begin{gathered} \text { All } \\ \text { Systemens } \end{gathered}$
Mean Percentage of RDA					
Total Calories	5me	20\%	20\%	19\%	20\%
Protein	488	35	34	33	34
Vitamin A	2m	25	27	24	25
Vitamin C	2.)	73	69	74	72
Calcium	2\%	30	29	29	29
Iron	25s	28	31	25	28
Mean Percentage of Calories from.					
Total Fat	3	29.8\%	26.6\%*	27.6\%	28.3\%
Saturated Fat		11.2	9.7*	9.9	10.5
Carbohydrate		57.4	61.1*	59.9	59.2
Mean Amount					
Cholesterol (mg)		59	53	52	55
Sodium (mg)		696	679	636	672
Number of Schools (Unweiphted)		220	121	128	487

${ }^{1}$ NRC recommendation, not SBP standerd.
Notes: Deta for NSMP and ANSMP were combined because of extremely small sample size for ANSMP (10 schools).
Dita for 18 schools that reported use of some other menu planning system are not presented separately becuuse of small sample sine. These schools are included in the "All Systems" column.

- Difference between the traditional food-besed zystem and NSMP/ANSMP is statistically significant at the .01 level.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.
served in NSMP/ANSMP schools met the SBP standard for the percentage of calories from saturated fat while breakfasts served in traditional food-based system schools did not. This was true for both elementary and secondary schools. In addition, at the elementary school level, difference in mean sodium content affected conclusions about the relevant NRC recommendation. The average sodium content of brealfasts served in elementary schools that used NSMP/ANSMP (528 mg) met the NRC recommendation of no more than 600 mg , while the average for elementary schools that used the traditional food-based memu planning system (605 mg) was slightly higher than the recommended level.

Data on the percentage of schools that met the various standards and recommendations suggest that schools using NSMP or ANSMP have a distinct advantage over schools using the traditional food-based system in meeting the SBP standard for calories from saturated fati. Among elementary schools, the percentage of NSMP/ANSMP schools that met the SBP standard for calories from saturated fat was significantly greater than the percentage of traditional food-based system schools (Exhibit B.5). The same trend was noted among secondary schools; however, the difference did not reach statistical significance (Exhibit B.6). In addition, among secondary schools, the percentage of NSMP/ANSMP schools that met the SBP standard for iron was significantly greater than the percentage of traditional food-based system schools (Exhibit B.6).

Characteristics of Low-Fat and Higher-Fat Breakfasts

USDA is committed to lowering the fat content of school meals without adversely affecting the amounts of other key mutrients offered to students. To determine whether this objective is being met, an analysis was undertaken to examine the effect of lower fat levels on the overall nutrient profile of breakfasts served to students.

Schools were stratified into two groups based on the average percentage of calories from fat in breakfasts served to students:

- Schools with low-fat brealdasts: Mean percentage of calories from fat was less than or equal to 30 percent (the SBP standard);
- Schools with higher-fat breakfasts: Mean percentage of calories from fat was more than 30 percent.

As discussed previously, breakfasts served to students in 71 percent of all schools provided, on average, no more than 30 percent of calories from fat. Thus, 71 percent of all schools were included in the low-fat group. The remaining 29 percent of schools were included in the higher-fat group. Creation of additional categories did not make sense because the number of schools was so small and the sample was clustered between just over 30 percent and 34 percent of calories from fat (see Exhibit 4.7).

The discussion that follows describes the average nutrient content of breakfasts served in schools that did and did not meet the SBP standard for the percentage of calories from fat. Information is also provided on general differences in the types of food offered in the two types of schools.

Average Nutrient Content

With regard to calories and the target RDA nutrients, nutrient profiles for the two groups of schools were very similar (Exhibit 4.11). For all key nutrients, the average brealfast served in schools in both the low-fat and higher-fit breakfast groups exceeded the one-fourth RDA standard defined for SBP meals. However, in keeping with the pattern reported previously, the mean calorie content of breakfasts served in both groups of schools fell short of the one-fourth RDA benchmark. These data indicate that decreased levels of fat in school brealcasts did not lead to notable decreases in the availability of calories or key nutrients.

Moreover, the data indicate that decreased levels of fat led to other positive changes in school breakfasts without compromising the overall nutrient profile. The average brealfast served in schools in the low-fat group provided a smaller percestage of calories from saturated fat and a greater percentage of calories from carbohydrate than the average breakfast served in schools in the higher-fat group. In fact, the average brealfast served in schools in the low-fat group met the SBP standard for calories from saturated fat as well as NRC recommendations for calories from carbohydrate and total sodium content. The average breakfast served in schools that offered higher-fat breakfasts met none of these standards.

Foods Most Commonly Offered

Exhibit 4.12 shows the relative frequency with which various food items were included in the menus offered by schools that served low-fit and higher-fat brealfasts. The exhibit shows the percentage of schools that offered each item at least once per week. Notable differences are summarized below. As noted in the introduction to the comparable analysis for NSLP meals (see Chapter Three), this analysis is meant to be descriptive and no statistical tests have been performed on the data. Because of small sample sizes for some of the individual cells, readers should be cautious not to over-interpret the data. Patterns observed in the data provide some insight into menu planning practices that may influence the level of fat in school breakfasts but should not be interpreted as fully predictive. The percentage of calories from fat in the average meal served to students is influenced by the full array of menu offerings, as well as by students' selection patterns, rather than by a single item or group of items.

Notable differences between menus offered in the low-fat and higher-fat groups are summarized below:

- Milk: Schools in the low-fat group offered whole milk less often and 1% milk (both flavored and unflavored) more often than schools in the higher-fat group.
- Fruit, Juice and Vegetables: Schools in the low-fat group offered fresh fruit, canned fruit and potatoes more often than schools in the higher-fat group.
- Breada/Bread Alternates: Schools in the low-fat group offered pancakes and waffles, plain bread and rolls, muffins and crackers more often than schools in the higher-fat group. In contrast, schools in the higher-fat group offered higher-fat breads such as biscuits, combread and croissants more often than schoois in the low-fat group.

Exhibit 4.11

Compared to Higher-Fat Brealdasts, Low-Fat Brealfasts Provided Comparable Amounts of Calories and Key Nutrients

| | | | |
| :--- | :--- | :--- | :--- | :--- |

[^24]Source: Weighted nutrient analysis of menu and meal prodvction data for one week betweea September 1998 and May 1999.

Exhibit 4.12

Schools That Served Low-Fat Brealifasts Teaded to Offer Certain Foods More Oftea than Schools That Served Bigher-Fat Brealfiasts

	Relative A moant of Pat in Average Bronldiat, as Served ${ }^{\text {a }}$	
	Lew	Higher
	Percentage of Schoels Oftering Itien at Least Once per Wook	
M11		
1\% unflavored	58\%	53\%
1\% flavared	49	44
2\% unflavored	47	47
Whole unflavored	46	59
Skim unflavored ${ }^{\text {' }}$	26	30
Skim flavored'	11	11
2\% flavored	6	10
Frults, Julces, Vegetables		
Full-strength citrus juices	86	86
Full-strengh non-citrus juices	70	75
Fresh fruit	33	24
Cemned fruit	32	25
Potatoes (ill types)	12	8
Graima/Breads (not part of a comblnation entree)		
Cold cereal	94	93
Pancakes, wefles, French toest	69	47
Doouts, Danish, other pestry	64	69
Bread, rolls, bagels, other plein breads	42	34
Muffins, sweel/quick breads, cereal bars	46	35
Buttered tosst, bagels with cream choese	36	40
Biscuits, cornbread, croissants	25	37
Crackers ${ }^{2}$	20	8
Hot cereal	12	19
Meatu/Meat Alvernates (sot part of a comblination eatree)		
Sausage	31	43
Eggs	23	29
Yogurt	12	7
Lean meatpoultry/fish	11	13
Cheese	7	12
Peanut Butter	5	5

Exhibit 4.12
(continued)

	Relative Amount of Fat in Avernge Brealdant, as Served ${ }^{\text {a }}$	
	Lew	Higher
	Perceatage of Schoolt Olfering Fiem at Leart Once per Week	
Comblnation Entrees		
Brealfinst sandwiches	45	49
Piza (all types)	30	38
Seusage with pencake and similar products	19	22
Mercicm-style entree	15	9
Condiments and Spreadr		
Nonfithowfit spreads	74	64
Higher-fat spreads	29	30
Nonfithowfat condiments	9	11
Number of Daily Menus (Unweighted)	2,683	1,239
Number of Schools (Unweighted)	549	255

${ }^{1}$ Lowfitis defined sas no more than 30 percent of totel calories from fit. Sehools in this group met the SBP standard for percentage of calories from firt. All schools not included in the low-fit group are included in the higher-fit group.
${ }^{2}$ Genernlly graham crackers or saltines that could be coupled with peanut butter or cheese.
${ }^{3}$ Foods that do not contribute to satisfying the meal patterns for the traditional or enhanced food-besed menu planning syatems.
Note: See Exhibit E. 6 for a detailed listing of items included in each group.
Source: Weighted tabulations of menu and meal production data for one week between September 1998 and May 1999.

- Meata/Meat Alternates: Schools in the higher-fat group offered sausage, eggs and cheese more often than schools in the low-fat group. Schools in the low-fat group offered yogurt more often than schools in the higher-fat group.
- Comblnation Entrees: Compared to schools in the low-fat group, schools in the higherfat group offered most types of combination entrees somewhat more frequently.

Sources of Calories and Nutrients in SBP Breakfasts as Selected

To provide information on the food sources of calories and key nutrients in SBP breakfasts, the percentage contribution to the calorie and nutrient content of the average brealfast was computed for six major food groups: milk; fruit, vegetables and juice; grains and breads (not part of a combination entree); meat and meat alternates (not part of a combination entree); combination entrees; and other menu items (items not "counted" toward food-based meal pattems). These major food groups were expanded to 25 minor food groups. Results are shown in Exhibit 4.13 and major findings are summarized below.

Calories

The major source of calories in SBP breakfasts served in SY 1998-99 was grain and bread products, which provided 37 percent of total calories. Major contributors included donuts, Danish and other pastries; cold cereals; and pancakes, waffles and French toast. Milk was the second leading source of calories in school breakfasts, providing about one-quarter of the calories in an average brealfast. Fruit, juice and vegetables contributed 12 percent of brealfast calories and combination entrees contributed another 13 percent.

Carbohydrate

Grains and breads were also the leading source of carbohydrate in school breakfasts (41\%). Leading carbohydrate contributors in this group included cold cereals and donuts, Danish and other pastries. Milk and, as a group, fruit, juice and vegetables each contributed about 20 percent of the carbohydrate in the average school breakfast. Within the category of fruit, juice and vegetables, most of the carbohydrate came from juice.

Total Fat

More than 35 percent of the fat in school breakfasts came from grain and bread products. Donuts, Danish and other pastries were the major contributors in this group (13\%). Pancakes, waffles, and French toast; buttered bread and rolls; biscuits, combread and croissants; and muffins and sweet breads contributed smaller amounts of fat ($4-5 \%$ each). Milk contributed 26 percent of the fat in the average brealfast and combination entrees contributed another 21 percent.

Exhibit 4.13
Sources of Calories and Nutrients in SBP Brealfasts As Served

	Calories	Protelm	Carbohydrate	Fat	Saturated Fat	Sodium
Food Group/Food(g)	Percentage Contribution to Average Amount Served					
Milk	25.9\%	47.9\%	21.1\%	25.5\%	42.4\%	19.3\%
Whole milk	5.1	8.1	2.5	9.0	15.0	3.0
Lowfatnonfat milk'	20.9	39.8	18.6	16.5	27.4	16.3
Fruits, Juices, Vegetables	12.0	3.5	19.5	0.8	0.4	0.6
Fruits or vegetables	2.6	0.6	4.4	0.3	0.2	0.1
Juice	9.4	2.8	15.1	0.5	0.2	0.4
Gralma/Breads (not part of a combination entree)	37.1	22.3	41.1	35.6	21.5	44.4
Bread, rolls, bagels, other plain breads	3.2	3.3	4.0	1.0	0.6	4.5
Buttered toast, bagels with cream cheese	3.0	2.1	2.7	4.3	2.9	4.0
Biscuits, cormbread, croissants	2.9	1.8	2.6	4.1	2.6	5.9
Cold cereal	8.3	3.8	12.3	2.3	1.3	11.1
Hot cereal	0.5	0.4	0.5	0.3	0.2	0.7
Crackers	0.9	0.5	1.1	0.8	0.5	0.9
Donuts, Danish, other pastries	9.9	4.9	9.4	12.9	8.0	7.4
Muffins, sweet/quick breads	3.3	1.5	3.3	4.0	2.2	2.6
Pancakes, waffles, French toast	5.1	4.1	5.1	5.2	3.2	7.4
Meat/Meat Alternates (not part of a combination entrec)	4.8	9.0	1.0	10.8	10.7	8.2
Eggs	1.0	2.1	0.1	2.2	1.8	1.3
Yogurt	0.5	0.6	0.6	0.1	0.2	0.2
Peanut butter	0.4	0.5	0.1	1.0	0.5	0.2
Sausage	1.9	3.6	0.1	5.1	5.1	3.3
Cheese	0.5	1.0	0.0	1.3	2.1	1.3
Other	0.5	1.3	0.1	1.1	0.9	2.0

Exhibit 4.13
(continued)

	Calories	Protelin	Carbohydrate	Fat	$\begin{aligned} & \text { Saturated } \\ & \text { Fat } \end{aligned}$	Sodium
Food Group/Food(\%)	Percentage Contribution to Average Amount Served					
Combination Entrees	128\%	16.0\%	8.0\%	21.2\%	19.5\%	23.1\%
Brealfast sandwiches	6.8	8.8	3.9	11.9	11.5	13.2
Other combination entrees	6.0	7.2	4.1	9.4	8.0	9.9
Other Menu Items ${ }^{2}$	7.4	1.4	9.3	6.6	5.5	4.4
Fruit drinks/ades	0.2	0.0	0.3	0.0	0.0	0.0
Lowfatnonfat condiments and spreads	4.7	0.1	8.1	0.2	0.1	1.2
Higher-fat condiments and spreads	1.2	0.5	0.1	4.2	3.6	1.0
Other	1.3	0.7	0.9	2.3	1.8	2.1

Exhibit 4.13
(continued)

Food Group/Food(s)	Cholesterol	Vitamin A	Vitamin C	Calclum	Iron
	Percentage Contribution to Average Amount Served				
M ${ }^{\text {P }}$	288\%	48.9\%	5.6\%	75.4\%	6.5\%
Whole milk	11.0	4.8	0.9	12.8	0.5
Low-fat milk ${ }^{1}$	17.9	44.1	4.7	62.6	6.0
Fruth, Juices, Vegetables	0.0	3.1	76.8	3.0	5.4
Fruits or vegetables	0.0	1.2	6.0	0.6	1.4
Juice	0.0	1.9	70.8	2.4	4.1
Graina/Breads (not part of a comblination entree)	16.3	38.3	14.7	10.9	73.1
Bread, rolls, bagels, other plain breads	0.1	0.0	0.0	1.1	5.9
Buttered toast, bagels with cream cheese	0.7	1.9	0.0	1.1	3.1
Biscuits, combread, croissents	0.2	0.4	0.1	1.3	2.9
Cold cereal	0.0	27.7	12.0	1.6	37.9
Hot cereal	0.0	0.3	0.0	0.1	0.7
Crackers	0.0	0.1	0.0	0.1	1.0
Donuts, Danish, other pastries	3.5	5.9	2.4	3.2	13.0
Muffins, sweet/quick breads	3.7	0.5	0.1	0.6	3.5
Pancakes, waffles, French toast	8.2	1.4	0.0	1.8	5.2
Meat/Meat Alternates (not part of a comblation entree)	28.9	2.7	0.4	3.0	2.6
Eggs	20.0	1.9	0.0	0.7	0.9
Yogurt	0.2	0.1	0.1	0.9	0.1
Peanut butter	0.0	0.0	0.0	0.1	0.2
Seusage	5.6	0.1	0.1	0.2	0.9
Cheese	1.1	0.7	0.0	1.2	0.1
Other	1.6	0.0	0.1	0.0	0.4

Exhibit 4.13
(continued)

Food Group/Food(s)	Choleaterol	Vitamin A	Vitamin C	Calcium	Iron
	Percentage Contribution to Average Amount Served				
Combination Entrees	24.4\%	4.6\%	0.6\%	7.2\%	10.9\%
Brealfast sandwiches	15.0	2.4	0.1	3.7	5.5
Other combination entrees	9.4	2.3	0.5	3.5	5.3
Other Menu Items ${ }^{2}$	1.8	2.4	2.0	0.6	1.5
Fruit drinks/ades	0.0	0.0	1.3	0.0	0.1
Lowfat/nonfat condiments and spreads	0.1	0.2	0.1	0.2	0.5
Higher-fat condiments and spreads	1.2	2.0	0.0	0.2	0.2
Other	0.5	0.1	0.5	0.2	0.7
Number of Daily Menus (Unweighted)			3,922		
Number of Schools (Unweighted)			804		

${ }^{1}$ Includes 1% and 2% milks.
${ }^{2}$ Foods that do not contribute to satisfying the meal patterns for the traditional or enhanced food-based menu planning syatems.
Notes: See Exhibit E. 6 for a detriled listing of items included in each group.
Columns may not sum to 100 percent because of rounding.

Saturated Fat

Forty-two percent of the saturated fat in school breakfasts came from milk. Grain and bread products contributed 22 percent of the saturated fat, primarily from donuts, Danish and other pastries. Combination entrees contributed 20 percent of the saturated fat in the average brealfast.

Sodlum

Grain and bread products contributed more than 40 percent of the sodium in school breakfasts. Major contributors within this group included cold cereals; pancakes, waffles and French toast; and donuts, Danish and other pastries. Combination entrees contributed almost a quarter of the sodium in the average breakfast and milk contributed another 19 percent.

Cholesterol

Leading sources of cholesterol in the average brealcast, as served, included milk (29\%), meat/meat alternates (29\%), and combination entrees (24\%). Brealfast sandwiches - which generally included eggs - and eggs offered on their own, contributed, respectively, 15 percent and 20 percent of the cholesterol in the average brealfast.

Vitamin A

Milk provided almost half of the vitamin \mathbf{A} in the average school breakfast. Grain and bread products, primarily cold cereals, contributed 38 percent of the vitamin A.

Vitamin C

Fruit, juice and vegetables were the major source of vitamin C in school breakfasts (77\%). The majority of this vitamin C was contributed by juice. Grain and bread products contributed 15 percent of the vitamin C in the average breakfast. Virtually all of the vitamin C from this group was contributed by cold cereals.

Calcium

Milk provided about three-quarters of the calcium in the average school brealfast, as served. Grain and bread products provided 11 percent of the calcium, with contributions widely dispersed across the various minor food groups in this category.

Iron
Almost three-quarters of the iron in the average breakfast came from grain and bread products. Cold cereals were the major contributor (38\%); followed by donuts, Danish and other pastries (13\%); plain bread, rolls and bagels (6\%); and pancakes, waffles and French toast (5\%). Combination entrees provided 11 percent of the iron in school brealfasts. Milk and the fruit/juice/vegetable groups each contributed about six percent of the total iron.

Chapter Five
 Comparison of Weighted and Unweighted Nutrient Analyses

Current NSLP and SBP memu planning requirements and monitoring standards are built around use of a weighted mutrient analysis (although the CN Reauthorization Act of 1998 waived the requirement through SY 2003 for school districts that obtain a waiver). This chapter presents comparisons of weighted and unweighted analyses of the menu and meal production information provided by schools that participated in the SNDA-II study. ${ }^{1}$ Data for school lunches are presented first, followed by data for school breakfasts.

There is a great deal of interest among both policy makers and school food service professionals in differences between the two approaches to analyzing the nutrient content of school meals. To reiterate, a weighted nutrient analysis incorporates information about student selection patterns and does not assume that every student takes one serving of every type of food offered. This approach provides a picture of the average meal served to or selected by students. In contrast, an unweighted nutrient analysis represents a simple average of all foods offered to students, assuming that students take a serving of each type of food offered to them. For schools using the food-based menu planning systems, this would include, for hunch, an average serving of: milk, entree, separate grain/bread (if offered), dessert or other additional item (if offered), and condiments, as well as two average servings of fruit, juice and/or vegetables. For schools using NSMP or ANSMP, this would include one average serving of milk, an average entree, and one or more average servings of side dishes, depending on how the daily menu is structured. An unweighted nutrient analysis provides a picture of the average meal offered to students.

The methodology used in the unweighted nutrient analysis was based on the approach used in the SNDA-I study and earlier studies of the NSLP and SBP. The basic algorithm is built around the foodbased meal patterns, as described above (a detailed description of the methodology is included in Appendix E). To permit comparisons with data from SNDA-I (summarized in the next chapter), this methodology had to be used. Because the assumptions included in the methodology do not reflect how NSMP/ANSMP menus are structured and marketed to students, a separate analysis was completed in which the unweighted analysis for NSMP/ANSMP schools was modified to reflect the basic differences in memu structure discussed above. Incorporation of the revised unweighted analysis for NSMP/ANSMP schools had no material effect on the results.

Because the use of a modified approach to the unweighted analysis for NSMP/ANSMP schools had no effect on the findings but had a substantial potential for causing confusion for readers of this report (different umweighted analysis results would be presented in this chapter and the next (SNDA-I versus SNDA-II) chapter), a decision was made to use only one versinn of the unweighted analysis - the version that essentially replicated the SNDA-I methodology - in this report. The interested reader may

1 The meal production deta are used only in the weighted analysis.
find supplementary exhibits that present results of the analyses that incorporated a modified unweighted analysis for NSMP/ANSMP schools in Appendices A (Exhibits A. 14 - A.17) and B (Exhibits B. 14 B.17).

School Lunches

This section compares results of weighted and unweighted analyses of school lunches along two dimensions: overall means compared to NSLP standards and NRC recommendations and the percentage of schools considered to have met the various standards and recommendations.

Mean Nutrient Content Relative to RDAs

For both elementary and secondary school lunches, the unweighted nutrient analysis resulted in greater estimated RDA contributions than the weighted nutrient analysis (Exhibit 5.1). The size of the disparity between weighted and unweighted means was consistently greater for secondary school hunches. For both types of schools, differences between weighted and unweighted means were greatest for vitamins A and C and smallest for iron and protein. All of the differences noted were statistically significant.

The finding that unweighted estimates of calorie and nutrient content tend to be greater than weighted estimates is consistent with differences between the two analytic methodologies. By definition, an unweighted analysis includes an average serving of every type of memu item offered, whereas a weighted analysis includes only foods actually served to students. Therefore, one would expect an unweighted analysis to produce greater mean estimates of calories and nutrients unless students consistently took at least one serving of each type of food offered to them. As reported in Chapter Three, the meal production data provided by cafeteria managers (and used in the weighted analysis) indicate that many students did not take a serving of each type of food offered to them at lunch.

In addition, the fact that differences between weighted and unweighted estimates were greater for secondary school lunches than elementary school lunches suggests that secondary school students were more likely than elementary school students to omit one or more of the items offered. This is also consistent with data reported in Chapter Three.

While acknowiedging mumerical differences in results of the two analytic approaches, and the statistical significance of these differences, it is important to recognize that both methods led to virtually identical conclusions about whether school lunches, on average, met defined standards for calories and RDA nutrients. The conclusion differs only for calories in secondary school lunches. When a weighted analysis was used, the average secondary school lunch provided 30 percent of the RDA for calories. When an unweighted analysis was used, the average secondary school hunch met the NSLP standard of providing 33 percent of the RDA for calories.

Thus, whether the analysis is based on the average lunch served to/selected by students (weighted analysis) or the average lunch offered to students (unweighted analysis), the data indicate that, in SY 1998-99, the average school lunch met all of the established RDA standards except, when a weighted analysis is used, calories in secondary school lunches.

Exhlbit 5.1 Estimates of Calorie and Nutrient Content of the Average Lunch Were Different for Weighted and Unweighted Analyses but Conclusions About the One-Third RDA Standard Were Similar

Secondary School Lunches

* Difference is statistically significant at the .01 level.
** Difference is statistically significant at the .001 level.

For elementary school lunches, the two analyses resulted in virtually identical estimates of the percentage of calories provided by fat (Exhibit 5.2). Among secondary schools, the weighted analysis resulted in a slightly greater estimate of the percentage of calories from fat than the unweighted analysis (35% versus 34\%). The difference between these two estimates was statistically significant.

Weighted and unweighted estimates of the percentage of calories provided by saturated fat were identical for elementary echool lunches. For secondary school lunches, the estimate from the weighted analysis was slightly greater than the estimate from the unweighted analysis, however, both estimates rounded to 12 percent. This difference was also statistically significant.

Despite the statistical significance of the differences cited above, conclusions about whether school lunches met defined NSLP standards for fat and saturated fat were identical for the two analysis methods. Whether the analysis was based on the average lunch served to students (weighted analysis) or the average lunch offered to students (unweighted analysis), the data indicate that, in SY 1998-99, the average school lunch did not meet established NSLP standards for the percentage of calories from fat or saturated fat.

Cholesterol, Sodium and Carbohydrate Content

For both elementary and secondary school hunches, the unweighted analysis produced somewhat greater mean estimates of cholesterol and sodium content than the weighted analysis (Exhibit 5.3). In addition, the urweighted analysis of secondary school hunches produced a greater mean estimate of the percentage of calories from carbohydrate than the weighted analysis. For elementary school lunches, differences were statistically significant for cholesterol and sodium. For secondary school lunches, differences were statistically significant for all three measures.

Again, however, differences did not affect overall conclusions about whether the average school lunch offered (unweighted analysis) or served (weighted analysis) in SY 1998-99 met NRC recommendations. Both weighted and unweighted analyses found that school lunches met the NRC recommendation for cholesterol but did not meet NRC recommendations for sodium or the percentage of calories from carbohydrate.

Percentage of Schools That Met Nutrient Standards and Recommendations

Another way of assessing differences between the two analysis methods is to compare the percentage of schools that each method would classify as having met the various NSLP standards and NRC recommendations. Looking at the data this way reveals that the choice of analytic approach can have a significant impact on whether or not an individual school meets a specific mutrition standard. This is particularly true for secondary schools.

NSLLP Standards for Calories and Eey Nutrients

Among elementary schools, the only measures for which the two analytic approaches yielded results that were significantly different (with regard to the percentage of schools classified as having met NSLP standards) were calories and vitamin C (Exhibit 5.4). When a weighted analysis was used, the percentage

Exhlbit 5.2 Estimates of the Percentage of Calories from Fat and Saturated Fat in Lunches Were Similar for Weighted and Unweighted Analyses

** Difference is statistically significant at the .001 level.

Exhlbit 5.3 Estimates of Cholesterol and Sodlum Content Were Difierent for Welghted and Unweighted Analyses but Conclusions About Whether Lunches Met NRC Recommendations Were Identical

Cholesterol

Cholesterol

- Difference is statisticelly ics illient at the .01 level
*- Difference is stetesticelify signilicent at the .001 level.

Exhibit 5.4
Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch Based on Weighted and Uaweighted Analyses

Elementary Schools

Standard/Recommendation	Welghted (Served)	Unwelghted (Oflered)	Perceat Diflerence(Welghted va.Unwelhted)
	Percentage of Scheols		
Defined NSLP Standards			
Calories	68\%	82\%	-17\%**
Protein	100	100	0
Vitamin A	98	99	-1
Vitamin \mathbf{C}	86	94	-9**
Calcium	100	100	0
Iron	93	96	-3
Percentage of Calories from Fat	21	18	+17
Peroentuge of Calories from Seturated Fat	15	15	0
NRC Recommeadatiavs			
Percentage of Calories from Carbohydrate	18	20	-10
Cholesterol	99	95	+4
Sodium	1	1	0
Number of Schools (Unweighted)			

** Difference between weighted and unweighted analysea is statistionily signifionnt at the .001 lovel.
Source: Menu and meel production deta for one week between September 1998 and May 1999.
of elementary schools that met the one-third RDA standard for calories was 17 percent lower than when a weighted analysis was used (68% versus 82%). The percentage of elementary schools that met the RDA standard for vitamin C was nine percent lower (86% versus 94%) when a weighted analysis was used.

The disparity between results of weighted and unweighted analyses was greater among secondary schools (Exhibit 5.5). Statistically significmnt differences were noted for calories and all RDA mutrients except protein. In all cases, the unweighted analysis classified a larger percentage of schools as having met the standard than did the weighted analysis. The relative size of the differences for key nutrients ranged from 14 percent (calcium) to 28 percent (vitamin A). Results were most divergent for calories. Using an unweighted analysis, 45 percent of secondary schools met the one-third RDA standard. Using a weighted analysis, the percentage of schools meeting the standard was more than 50 percent lower, at 20 percent.

NSLP Standards for the Percentage of Calories from Fat and Saturated Fat

For elementary schools, there were no statistically significant differences between weighted and unweighted analyses in conclusions about the percentage of schools that met NSLP standards for the percentage of calories from fat or ssturated fat (Exhibit 5.4). Among secondary schools, however, differences between results of weighted and unweighted analyses were statistically significant for the percentage of schools judged to have met the standard for calories from fat (Exhibit 5.5). The difference favored the unweighted analysis. That is, the unweighted analysis was more likely than the weightod analysis to classify a school as having met the standard of providing no more than 30 percent of calories from fat. Using a weighted analysis, the percentage of secondary schools trat met the NSLP standard for calories from fat was 33 percent lower than when an unweighted analysis was used (14\% versus $\mathbf{2 1 \%}$)

NRC Recommendations for Cholesterol, Sodium and Calories from Carbohydrate

For both elementary schools and secondary schools, results of the two analyses were identical for sodium (Exhibit 5.4 and 5.5). Virtually no schools met the standard for sodium, regardless of the analytic approach used. Among elementary schools, there were no significant differences between weighted and unweighted analyses in the percentage of schools deemed to have met NRC recommendations for cholesterol or the percentage of calories from carbohydrate. Among secondary schools, however, differences were statistically significant for both of these measures. The result for calories from carbohydrate followed expectations - more schools were judged to have met the recommendation when an unweighted analysis was used. The result for cholesterol was different from the pattern noted for all other nutrients, however. The percentage of schools deemed to have met the NRC recommendation for cholesterol was greater (rather than smaller) when a weighted analysis was used.

Factors Influencing Estimates of Relative Fat Content

Exploratory analyses were carried out to identify factors that may contribute to differences in weighted and unweighted estimates of relative fat content - a key indicator of nutritional quality. Twenty-five individual daily menus were selected at random from those with the most widely divergent results for weighted and unweighted analyses. The menus and associated meal production data were examined to determine whether specific types of situations (e.g., types of food offered or student selection patterns) were associated with greater estimates of the percentage of calories provided by fat for cither one analytic approach or the other.

Exhibit 5.5

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lanch Based on Weighted and Unweighted Analyses
 Secondary Schools

Standard/Recommendation	Weighted (Served)	Unwelghted (Oflered)	Percent Difierence
	Percentage of Schools		Uwwelohted)
Deflmed NSLP Standards			
Calories	20\%	45\%	-56\%**
Protein	100	100	0
Vitamin A	65	90	$-28^{* *}$
Vitamin C	79	94	-16**
Calcium	86	100	-14**
Iron	60	71	$-15^{* *}$
Percentage of Calories from Fat	14	21	-33**
Percentage of Calories from Selurated Fat	13	16	-19
NRC Recommendations			
Percentage of Calories from Carbohydrate	14	22	-36**
Cholesterol	96	90	+7**
Sodium	<1	<1	0
Number of Schools (Unweighted)	677		

*0 Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Menu and meal production deta for one week between September 1998 and May 1999.

Memus that resulted in greater estimates of the percentage of calories from fat when a weighted analysis was used had one or more of the characteristics identified below. In the discussions that follow, an attempt has been made to explain why these characteristics would tead to contribute to greater estimates of the percentage of calories from fat when the nutrient analysis is weighted and lower estimates when the annlysis is unweighted.

- Availability of separate grain/bread items or other high-carbohydrate items (e.g., fruit drinks) that the majority of students did not select. An unweighted analysis would assume that all meals included an average of serving of these foods, thereby increasing calories from carbohydrate and diluting the percentage of calories provided by fat.
- A minority of students, often 50 percent or fewer, selected milk of any kind (secondary school menus only). An unweighted analysis would assume that all meals inchuded an average of serving of milk. Milk, by virtue of its carbohydrate coatent, teads to increase calories from carbohydrate and dilute the percentage of calories provided by fit.
- A majority of students selectred the highest-fat entree options. The fit content of the average eatree included in an unweighted analysis would be diluted (tend to be lower than the cumulative fat contribution of the entrees considered in the weighted analysis) because it gives equal consideration to the high-fat and low-fat entrees, even though the latter were actually selected by few students.
- French fries were offered as one vegetable option and were selected by a majority of sfudents. In an unweighted analysis, the fat contribution of the French fries would be diluted because the French fries would be averaged in with all other available fruits, juices and vegetables which, on the whole, tend to be substantially lower in fat than French fries.

In contrast, meaus that resulted in greater estimates of the percentage of calories from fat when an unweighted analysts was used had one or more of the following characteristics:

- Salad dressing was offered for a side salad and/or entree salad that was actually selected by a minority of students. If iew students select the salad, the fat contributed by the salad dressing has very little effiect on the results of a weighted nutrient analysis. In an unweighted analysis, however, salads are averaged in with all other options (firuits and vegetables in the case of side salads and eatrees in the case of entree salids) and it is assumed that salad dressing is served with each salad.
- The highest-fat entree option(s) were selected by a minority of students. This is the reverse of the entree selection issue discussed above (where students teaded to select the highest-fite entree options more (rather than less) oftan than lower-fat options). In this case, the fat content of the average entree considered in the unweighted analysis will tend to be greater then the cumulative fat contribution of the entrees considered in the weighted analysis.
- Higher-fat milk options were offered (e.g., whole milk or 2% milk), but were selected by a minority of students. If higher-fiat milks are offered but rarely selected, the average milk
considered in the unweighted analysis will tend to be higher in fat (because all milks are considered equally) than the cumulative contribution of milks considered in the weighted analysis.
- A high-fat condiment was offered with a non-entree menu item that was selected by a minority of students (e.g., butter with a roll). The effect of this situation is similar to the salad and salad dressing situation discussed above. The unweighted analysis will assume that every meal included the roll, with butter (or, if more than one additional grain/bread item is offered, an average of the roll with butter and all other options). In contrast, the butter will contribute to the weighted analysis only in relation to the number of meals in which it was included.
- A high-fat item offered as an optional additional item (e.g., clam chowder, macaroni salad) was actually selected by a minority of students. The effect of this situation is similar to that described for salads with dressing and rolls with butter.

School Breakfasts

This section compares results of weighted and unweighted analyses of school brealfasts along the same two dimensions used in the preceding analysis of school lumches: overall means compared to SBP standards and NRC recommendations and the percentage of schools considered to have met the various standards and recommendations.

Mean Nutrient Content Relative to RDAs

For most nutrients, the unweighted mutrient analysis of brealfist menus resulted in significantly greater estimated contributions to the RDAs than the weighted nutrient analysis (Exhibit 5.6). Differences between weighted and unweighted means were greatest for vitamin A (with the weighted mean for secondery schools just meeting the one-fourth RDA standard) and iron and smallest for protein and calories. (The difference for calories wes 22.6% [weighted] versus 23.4% [unweighted]).

With the exception of calories, where estimated means for both analyses fell short of the ono-fourth RDA standard, means for both weighted and unweighted anslyses met or exceeded the SBP standard. Thus, general conclusions about the importance of differences between the two analysis methods are similar to those reached for the comparison of weighted and unweighted analyses of hunch menus. Whether the analysis is based on the average breakfast served to students (weighted analysis) or the average breakfast offered (unweighted analysis), the data indicate that, in SY 1998-99, the average school brealinst met all of the established RDA standards except for calories.

Percentage of Calories from Total Fat and Saturated Fat

For both elementary school and secondary school breakfists, the weighted analysis resulted in a slightly greater estimate of the percentage of calories provided by total fat and by saturated fatt than the unweighted analysis (Exhibit 5.7). However, the only difference that was statistically significmant and

Exhlbit 5.6 Estimates of Calorie and Nutrient Content of the Average Breakfast Were Different for Weighted and Unweighted Analyses but Conclusions About the One-Fourth RDA Standard Were Similar

Elementary School Breakfasts

Secondary School Breakfasts

- Difierence is statistically significant at the .01 level.
* Dilierence is statietically significant at the .001 level.

Exhlbit 5.7 Estimates of the Percentage of Calories from Fat and Saturated Fat in Breakfasts Were Similar for Weighted and Unweighted Analyses

Elementary School Breakfasts

Secondary School Breakfasts

- Difierence is statistically significent st the .01 level.
* Divierence is statisticelly significent at the .001 level.
affected conclusions about whether SBP meals met program standards was the difference in the percentage of calories provided by saturated fat in secondary school breakfasts. When a weighted analysis was used, the mean percentage of calories from saturated fat in secondary school breakfasts just exceeded the program standard (10.5% of calories compared to the standard of less than 10%). When an unweighted analysis was used, the mean was just below 10 percent (9.8%) and was therefore consistent with the standard.

Cholesterol, Sodium and Carbohydrate Content

The weighted anslysis produced greater mean estimates of cholesterol and sodium content than the unweighted analysis (Exhibit 5.8). In contrast, the unweighted analysis resulted in greater mean estimates of the percentage of calories provided by carbohydrate. With the exception of cholesterol and sodium for elementary school brealfasts, all of the differences were statistically significant. However, most did not affect conclusions about whether the average school brealfast met NRC recommendations. Regardless of the analysis method used, the average school breakfast in SY 1998-99 met the NRC recommendation for cholesterol (equivalent to one-fourth of the recommended maximum daily intake) as well as the NRC recommendation for the percentage of calories from carbohydrate. With regard to sodium content, both analyses found that breakfasts in elementary schools satisfied the NRC recommendation. Secondary school breakfasts exceeded the recommendation when a weighted analysis was used but essentially met the recommendation when an unweighted annlysis was used.

Percentage of Schools That Met Nutriemt Standards and Recommendations

Exhibits 5.9 and 5.10 summarize the percentage of elementary and secondary schools that met SBP standards and NRC recommendations when weighted and unweighted analyses were used. The following sections discuss results for the various mutrition standards and recommendations examined in this report.

SBP Standards for Calories and Eay Nutrients

Among elementary schools, differences between the two analysis methods in the percentage of schools considered to have mot SBP standards for calories and RDA nutrients were apparent but none were statistically significant. Among secondary schools, differences were statistically significant for calories and all RDA nutrients except Vitamin C. With the exception of calories, the unweighted analysis was more likely than the weighted analysis to classify a school as having met the one-fourth RDA standard.

SBP Standands for the Percentage of Calories from Fat and Saturated Fat

No significant differences were observed for elementary schools (Exhibit 5.9), but significant differences were observed for secondary schools (Exhibit 5.10). Specifically, the unweighted analysis classified significantly more secondary schools as having mot SBP standerds for calories from fat and calories from saturated fatt then did the weighted analysis. Compared to results of the unweighted analysis, the weighted analysis considered 15-16 percent fower secondary schools to be in line with the standards for calories from fit and saturated fit.

NRC Recommonadations for Cholesterol, Solium and Calories from Carbohydrate

In comparison to the unweighted analysis, the weighted analysis classified significantly fewer schools as having mat NRC recommendetions for cholesterol and the percentage of calories from carbohydrate (Exhibits 5.9 and 5.10). This was true for both elementary schools and secondary schools, but the

Exhlbit 5.8 Estimates of Cholesterol and Sodium Content Were Different for Weighted and Unwoighted Analyses but Conclusions About Whether Breakfasts Met NRC Recommendations Were Generally Similar

${ }^{*}$ Oillerence is ateltetically stgnilicant at the .001 leviel.

Exhibit 5.9
Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealfast Based on Weighted and Unweighted Analyses Elementary Schools

Standard/Recommendation	Welghted (Served)	Unweighted (Olfered)	Percent Dhference
	Percentage of Schools		Urweighted)
Deflmed SBP Standards			
Calories	22\%	24\%	-8\%
Protein	100	100	0
Vitamin A	95	99	-4
Vitamin C	98	98	0
Calcium	99	100	-1
Iron	93	90	+3
Percentage of Calories from Fat	75	79	-5
Percentage of Calories from Saturated Fat	54	60	-10
NRC Recomamendations			
Percentage of Calories from Cerrbohydrate	82	90	-9*
Cholesterol	90	96	-6**
Sodium	63	69	-9
Number of Schools (Unweighted)	317		

- Difference between weightod and unweighted analynes is statistically significant at the .01 level.
e0.Difference between weighted and unweighted analynes is atatistically significant at the .001 level.
Source: Menu and meal production data for one week between September 1998 and May 1999.

Exhibit 5.10

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealfast Based on Weighted and Unweighted Analyses Secondary Schools

Stamdard/Recommendation	Welghted (Served)	Uwwelghted (Oflered)	Percent Difference
	Percentage of Schools		Unwelghted)
Deflised SBP Standards			
Calories	8\%	3\%	+167\%**
Protein	95	100	-5**
Vitamin A	48	72	-33**
Vitamin C	95	99	4.
Calcium	78	100	-22**
Iron	57	68	-16*
Percentage of Calories from Fat	64	76	-16**
Percentage of Calories from Seturated Fat	46	54	-15*
NRC Recommendations			
Percentage of Calories from Carbohydrate	72	88	-18**
Cholesterol	76	91	-16**
Sodium	42	57	-26**
Number of Schools (Unweightod)	487		

- Differenoe between wighted and uqweighted analymes is atatistically significant at the .01 level.
*e Diffierence betweea weighted and unweighted analyses is statistionlly aignificant at the .001 level.
Source: Meau and meel production data for one week between September 1998 and May 1999.
difference was most pronounced among secondary schools. In addition, among secondary schools, significantly fewer schools met the NRC recommendation for sodium when a weighted analysis was used.

Factors Influencing Estimates of Relative Fat Content

Exploratory analyses were carried out to identify factors that may contribute to differences in conclusions about relative fat content when weighted and unweighted analyses are used. Twenty-five individual daily memus were selected at random from those with the most widely divergent results for weighted and unweighted analyses and menus and meal production data were examined. Observations made during this review and potential impacts on weighted and unweighted nutrient analyses are summarized below.

Menus that resulted in greater estimates of the percentage of calories from fat when a weighted analysis was used had one or more of the following characteristics in common:

- Most students selected the highest-fat breakfast option(s). Most often the contrast between options was stark (e.g., breakfast sausage or a brealfast sandwich versus cold cereals). The impact of this stark a difference is obvious. If a majority of students select the highest-fat breakfast option(s), the meari fat content is likely to be higher under a weighted analysis than an unweighted analysis. This is especially true when the low-fat options are very low in fat (e.g., hot or cold cereals, plain breads).
- Whole milk was offered and selected by a majority of students. Given that the array of foods offered for breakfast is limited in comparison to lunch, milk tends to have more influence on breakfast analyses. If whole milk is available and selected most often, the contribution of the fat in the whole milk to the overall nutrient average will be greater for the weighted analysis than the unweighted analysis (which will consider, equally, all other and lower-fat - milk choices).

Memus that resulted in greater estimates of the percentage of calories from fat when an unweighted analysis was used had one or more of the following characteristics:

- A minority of students selected the highest-fat menu option(s) (e.g., cream cheese, peamut butter, pastries). This is the converse of the situation described above, where a majority of students selected the highest-fat options. Situations where students tend toward the lowerfate options lead to more favorable results under a weighted analysis. This is true because the unweighted analysis weights all available options equally and assumes that all optional items (e.g., cream cheese) are taken.
- Whole milk was offered but was selected by a minority of students. This is the converse of the milk situation described above. If whole milk is offered but not frequently selected, the contribution of the fat in the whole milk to the nutrient analysis will always be greater in an unweighted analysis.

Chapter Six
 Changes in Nutrient Content of School Meals Offered Since SY 1991-92

Abstract

This chapter compares the nutrient content of school meals offered in SY 1998-99 to those offered in SY 1991-92, when the last national study of school meals programs (the first School Nutrition Dietary Assessment Study (SNDA-D)) was completed. Differences noted between SNDA-I (SY 1991-92) and SNDA-II (SY 1998-99) can not be attributed to amy one factor. Factors that may contribute to observed differences include changes in the food supply over time (e.g., the introduction of new products and changes in product formulations in both USDA commodity foods and foods available in the quantity food service market); as well as changes in menu planning, food purchasing, and food preparation practices of school food service personnel. Differences in data collection methodology (data for all schools in SNDAII were collected via a mail survey while data for more than half of the SNDA-I schools were collected on site) and/or in the nutrient databases used in the two studies may also contribute to the observed differences. ${ }^{1,2}$ Every precaution was taken to minimize the potential influence of differences in data collection methodology and analysis.

Overview of the Analysis

The data presented in this chapter are based on unweighted nutrient analyses of lunch and breakfast menus. An unweighted analysis was used because SNDA-I was based on an unweighted nutrient analysis and did not collect the information needed to complete a weighted analysis. Thus, the only way to compare SNDA-I and SNDA-II data was to re-analyze the SNDA-II data using an unweighted analysis.

As noted in the preceding chapter, an unweighted analysis is based solely on the foods offered to students. It does not take into consideration the number and types of foods actually included in the meals served to students. As such, an unweighted analysis provides a picture of the average meal offered to students. At the time the SNDA-I study was completed, this was the standard approach used to evaluate the mutrient content of school meals.

[^25]In SNDA-I, the traditional meal pattern provided the framework for the unweighted analysis. The matrient content of the average lunch offered in each school was determined by summing the nutrients in an average serving of milk; two average servings of fruit/vegetables; an average entree; an average additional grain/bread (if offered); an average dessert or other non-creditable menu item (if offered); and an average serving of condiments. Non-creditable items did not "coumt" toward satisfying any of the component requirements of the traditional meal pattern.

To obtain a basis for comparison, SNDA-II data were reanalyzed, following the analytic approach outlined above, to produce unweighted estimates of the average nutrient content of school meals. An exception was made to account for the fact that, in SY 1998-99, many schools encouraged students to take more than two fruit/vegetable servings. If the meal production data provided for the weighted analysis indicated that, on average, students took more than two servings of fruit and/or vegetables, the algorithm used to determine the nutrients in the average lunch was adjusted to inchude three or, in rare cases, four servings of fruit/vegetables. ${ }^{3}$ A detailed description of the methodology used in the unweighted analysis is included in Appendix E.

Finally, because SNDA-II was limitai to public schools, SNDA-I data were reanalyzed with the sample restricted to public schools. Data for middle schools and high schools were combined to produce estimates for secondary schools.

Average Nutrient Content of Lunches Offered in Public Schools: SY 1998-99 and SY 1991-92

This section presents data on the average nutrient content of lumches offered at the two points in time. For calories and RDA nutrients, exhibits present actual means rather than the percentage of the RDA provided. This is done because SNDA-I and SNDA-II used markedly different approaches to assess the percentage of the RDA provided in school meals. SNDA-I compared the average calorie and nutrient content of meals offered for a given school type to all potentially relevant RDAs. For example, the mean nutrient content of elementary school meals was compared to RDAs for three different age/sex groups: 7-10 year olds, 11-14 year old females and 11-14 year old males. In keeping with current program regulations, the SNDA-II analysis compared weekly nutrient averages for each individual school to a customized, weighted RDA that was based on the grade configuration of the school (see Appendix E).

To overcome these differences in approsch and to present information in a manner that is consistent with the context in which school meal programs are operating today, both SNDA-I and SNDA-II data were compared to minimum nutrition standards defined in current NSLP regulations. Thus, the mean nutrient content of lunches offered in elementary schools was compared to minimum nutrition standards defined

[^26]for schools with grades K-6. Lunches offered in secondary schools (middle schools and high schools) were compared to minimum mutrition standards defined for schools with grades 7 through 12.

Data on the mean percentage of calories from fat, saturated fat and carbohydrate, as well as mean cholesterol and sodium content, were handled the same way in this chapter as in previous chapters. Indeed, SNDA-I and SNDA-II used identical standards and recommendations to assess these nutrients. The only difference is that at the time SNDA-I data were collected, standards for the percentage of calories from fat and saturated fat had not been officially adopted as standards for the NSLP and SBP.

The statistical significance of differences between meals offered in SY 1998-99 and SY 1991-92 was assessed using two-tailed t-tests (independeat samples). Because of the large mumber of t-tests that were conducted simultaneously, a conservative cutoff was used to define statistical significance, thereby decreasing the likelihood of reporting chance findings. Only differences thot were statistically significant at the .01 level or better are reported.

Mean Calorie and Nutrient Content Relative to Minimum Nutrition Standards

Exhibit 6.1 shows the mean calorie and nutrient content of elementary and secondary school lunches offered in SY 1998-99 and SY 1991-92. As a point of reference, minimum standards defined for NSLP meals served in schools with grades K through 6 (elementary schools) and 7-12 (secondary schools) are shown in the shaded column.

As the data indicate, the average elementary school lunch offered in both SY 1991-92 and SY 1998-99 exceeded defined minimum standards for calories, protein, vitamin A, vitamin C, calcium and iron. The average lunch offered in SY 1998-99 included significantly more of all targeted nutrients except protein.

With the exception of calories, findings were similar for hunches offered in secondary schools (Exhibit 6.1). In both SY 1991-92 and SY 1998-99, lunches offered in sccondary schools fell below the defined minimum calorie level but exceeded minimums for all RDA mutrients. The average secondary school lunch offered in SY 1998-99 provided, with the exception of protein, significantly more of all target nutrients than the average secondary school hunch offered in SY 1991-92.

Because hunches offered at both points in time exceeded the defined minimum stendards, the relative importance of the fact that hunches offered in SY 1998-99 provided significantly greater amounts of all key mutrients appears to be minimal. However, as data presented in the following sections demonstrate, the fact that the overall calorie and nutrient content of school lunches was maintained between SY 1991-92 and SY 1998-99, as several other characteristics of the lunches changed, is noteworthy.

Percentage of Calories from Total Fat and Saturated Fat

On average, neither lunches offered in SY 1998-99 nor SY 1991-92 met NSLP standards for the percentage of calories from fat or saturated fat (Exhibit 6.2). This was true for both elementary schools and secondary schools. In both cases, however, lunches offered in SY 1998-99 derived a significantly smaller percentage of calories from fat and saturated fat then lunches offered in SY 1991-92.

Mean Calorie and Nutrient Content of Lunches Offered in SY 1991-92 and SY 1998-99 Compared to Current NSLP Standards

	NSLP Standard	SY 1998-991 (Ottered)	$\begin{gathered} \text { SY 1991-922 } \\ \text { (Oftered) } \end{gathered}$	$\begin{gathered} \text { Percentage } \\ \text { Change } \\ \text { (SY 1998-99 vs. } \\ \text { SY 1991-92) } \end{gathered}$
Elementary Schools				
Mean Amount				
Total Calories	s\%	738	715	+3\%
Protein (gm)	18	30	30	0
Vitamin A (mcg RE)	4	491	397	+24**
Vitamin C (mg)	\%	37	28	+32**
Calcium (mg)	\%:5.	505	483	+5**
Iron (mg)	4	4.6	4.1	+12**
Number of Schools (Unweighted)		398	260	
Secomdary Schools				
Mean Amount				
Total Calories	4 4	798	820	-3\%
Protein (gm)	.	33	33	0
Vitamin A (mcg RE)	N	519	418	+24**
Vitamin C (mg)		42	34	+24**
Calcium (mg)		542	518	+5**
Iron (mg)		5.0	4.8	+4*
Number of Schools (Unweighted)		677	234	

${ }^{1}$ Data from the present study-the second School Nutrition Dietmry Assessment Study (SNDA-II).
${ }^{2}$ Data for all public schools in the first School Nutrition Dietary Assessment Study (SNDA-D).
Note: NSLP standards reflect minimums defined in current program regulations for grades K-6 (elementary schools) and 7-12 (secondary schools).

- Difference between SY 1998-99 and SY 1991-92 is statistically significant at the . 01 levol.
** Difference between SY 1998-99 and SY 1991-92 is statistically significant at the . 001 level.

Exhlblt 6.2 Between SY 1991-92 and SY 1998-99 There Was a Significant Trend Toward Lower Levels of Fat and Saturated Fat in School Lunches, as Offered

Secondary School Lunches

** Difference is statistically significant at the .001 level.
Note: NSLP standards for the percentage of calories from fat and saturated fat were not in effect during SY 1991-92.

Specifically, the average percentage of calories from fat decreased from 38 percent in SY 1991-92 to 34 percent in SY 1998-99, a decrease of roughly 10 percent. The average percentage of calories from saturated fit decreseed from about 15 percent to about 12 perceat, a decrease of roughly 20 percent. These diffirences demonstrate that between SY 1991-92 and SY 1998-99 there was a meaningful and statiatically significant trend toward lower levels of fat and saturated fat in school hunches, relative to calorie content.

Thus, the evidence suggests that public NSLP schools are making good progress toward meeting USDA's stratogic goal of satisfying the SMI standards for calories from fit and saturated fitt by the year 2005. While the available data indicate that there is more work to be done, it is important to realize that concentrated efforts in this area did not begin until the implementation of the School Meals Initiative (SMI) in 1995. Schools may not have begum implementing changes designed to lower the fatt and saturuted fitt content of school meals until SY1996-97 or later. Consequently, the available data should be viewed as indicative of roughly two to three years of reform effiots (SY 1995-96 or SY 1996-97 through the beginning of SY 1998-99) rather then a fall seven years of effort (the time elapsed since SNDA-I).

Finally, as noted in the preceding discussion of RDA nutrients, it is important to note that those improvements in fat and saturated fat content were achieved without a negative impact on cither the caloric or mutrient content of hunches offered to students.

Percentage of Schools Meating Standards for Fat and Saturated Fat

Although overall means for calories from fat and saturated fat in hunches offered in both SY 1991-92 and SY 1998-99 did nct moet NSLP standards for these mutrients, lunches offered in some individual schools in SY 1998-99 did meet these stmadards. This represents a dramatic departure from what was observed in SY 1991-92. In SY 1991-92, only one percent of all schools offered lunches that provided no more than 30 percent of calories from fat. In SY 1998-99, this figure was substantially higher - 18 percent of elementary schools and 21 percent of secondary schools (Exhibit 6.3).

The incresse in the number of schools meeting the standerd for saturated fat is equally noteworthy. In SY 1991-92, no schools satisfied this standard. In SY 1998-99, 15 percent of elementary schools and 16 percent of secondery schools met the standiard

Cholesterol, Sodium and Carbohydrate Content

On average, lunches offered in SY 1991-92 and SY 1998-99 in both elementary schools and secondary schools satisfied the NRC recommendation of providing no more than 100 mg of cholesterol (Exhibit 6.4). Means for SY 1998-99 were significantly lower; however, this difference has little substantive importance because means for both years met the NRC recommendation.

In contrast, the mean sodium content of humches offered, in both years and in both types of schools, exceeded the NRC recommendation for maximum sodium intalke (no more than 800 mg , or one-third of the suggested maximum daily intake of $2,400 \mathrm{mg}$) by a substantial margin. Mean sodium content of elementary school hunches offered in SY 1991-92 and SY 1998-99 were 61 percent (SY 1998-99) to 75 percent (SY 1991-92) higher than the recommended maximum. Means for secondary school lunches were substantially higher, approaching or exceeding double the recommended amount. Lumches offered

Exhlbit 6.3 For Lunches as Offored, the Percentage of Schools That Mot Standards for Total Fat and Saturated Fat Has increased Substantililly Since 8 Y 1991-92

* Difference is statistically signilicant at the .001 level.

Note: NSLP standards for the percentage of calories from fat and saturated fat were not in effect during SY 1991-92.

Exhbine 6.4 Lumehes Oflored In $8 \mathrm{Y} 1989-90$ Were Signilicantly Lower In Cholesterol and Sodlum and Migher in Colories from Cerbolyydrate than Lunches Ollored in SY 1891-92

Elementary school Lunches

* Dillerence is statustically slonilicant at the .001 level.
in both dementary schools men secoedrery schools in SY 1998-99 were significantly lower in sodium than hemches offired in SY 1991-92. The differesces were relatively small, however, and did litile to bring the overall moms within r rage of the recommended lovel.

Finally, linches offired in both SY 1991-92 and SY 1998-99 provided fewer calories from carbohydreto, on a parcentage basis, then recommended by the NRC.

Dintribution of Fat, Carbolydrate, Chotecterol and Sodhen Content
Exhibits 6.5 and 6.6 show the distribution of fint, carbolydrate, cholesterol, and sodium in lunches offired in SY 1998-99 and SY 1991-92 in, reepectively, elementary schools and secondary schools. As shown, not only has the percentrgee of schools meeting the various NSLP standards and recommendextions incresed over time, the relevent distributions have shiftod toward lower levels of fir and saturuted fin, relative to calorie content, as well as toward greater levels of carbohydrate.

Chenge over time was most modest for sodium. In SY 1998-99, the percentage of schools meeting the NRC recommendation for sodium content was only one parceat for elementary schools and less than one perceent for secondery schools. It is important to recognize that, while schools are now required to meet defined standerds for calories from fiat end saturuted fite (which inevitably influences the percentage of calories provided by carboly drate), achools are not required to meet a specific standerd for sodium costent

Avallability and Nutrient Content of Low-Fat Lunch Options

Even when the average lunch offered exceeds the stenderd of providing no more then 30 percent of calories from far, it is posaible that individual students could select meals that moet this stmaded if they chose menu items that were low in fit. This section discrusess the percentige of schools thet offered choices that, when avernged over a school weok, provided no more than 30 percectit of calories from fit and how this percentage has chenged over time. Dita are also presented on the average nutrient content of these low-fit hunch options.

The methodology used in this annlyyis replicates the methodology used in the SNDA-I study and is comparable to the methodology nsed in the besic unweighted mutrient analysis. However, rither then summing the mutrients included in an average serving from each major meal component cruegory, this amalysis included only the lowest-fit choices (based on the percentage of calorics from fat). Thus, the lowest-fit hunch consisted of the lowest-percent-fit milk option, the lowest-percent-fit eatree option, and the two lowest-percent-fat fruitvegetable options. Dosserts and other non-creditible items were not included in the amalysis because they are not required components of a reimbursable meal. Results of the annlyyis provide an estimate of the mutrients students would reccive, on average, if they consistently selected the lowest-fat items avvilable in each meal component category.

Exhibit 65

Distribution of Fat, Carbolydrate, Cholesterol and Sodium in Lunches Oliered in SY 1991-92 and SY 1990-99

Elementary Schooly

${ }^{1}$ Defe fiom the present study-the second Sohool Nutrition Dictary Aseesemeat Study (SNDA-II).
${ }^{2}$ Deta for all publici clementary sohools in the fint Sohool Nutrition Dietary Asosement Study (SNDA-D).
Notes: Highlighted rows show NSLP , tanderd (fitt and saturnted fiat) or NRC recommendation (cerbohydrate, cholesterol, and sodium).
NSLP standerds for the percentage of calories from fitt and seturated fit were not in effect during SY 1991-92.

Exhibit 6.6

Distributioa of Fat, Carbolydrate, Cholesterol and Sodium in Lunchas Otiered in SY 1991-92 and SY 1998-99
 Secomilay Sohools

${ }^{1}$ Dia from the present atudy-the second Sohool Nutrition Dictury Aseomment Study (SNDM-II).
${ }^{2}$ Dota for all problic secondery (midale and high) sohools in the fint School Nutrition Dietary A vewment Study (SNDA-D).
Notes: Highlighted rows ahow NSLP standend (fia and zeturated fin) or NRC recommendetion (ererbohydrate, choleterol, and vodium).

NSLP : tandarde for the perceatage of celories from fitt and saturated fit were aot in effict during SY 1991-92.

Avellonding of Low-Fit Lumeh Optlons

In SY 1991-92, 34 percent of ell clemontriy schools offiered options for a complete meal thet, when averryed over a week, provided no more than 30 percent of calories from fitt (Exchibit 6.7). In SY 199\%-99, the percentage of clementery schoole meeting this critarioa was almost 2.5 times greater - 82 percent

The percentage of secondary schools officring meal options that provided no more then 30 parcent of calories from fitt over the course of the weck also increased betweea SY 1991-92 and SY 1998-99. The relative magnitude of the incresse was substantinlly smaller, however, becumes more secondery schools then elementary schools met the critrion in SY 1991-92 (Exhibit 6.8). In SY 1991-92, the percentage of secondery achools offiring meal options that provided, on average, mo more then 30 percent of calories from fit was 71 percent. The comparable figure for SY $1998-99$ wis 91 percent, a 28 percent increme.

These data indicate that, even though overall means for the percentage of calorias from fitt in meals officred to stadents continued to exceed the program goal in SY 1998-99, students in 82 percent of all elementary schools and 91 percent of all secondery schools had she opportuntly to select meals that met this goal. We lonow from the data presented in Chapter Three thet, ca sverages, students did not seloct such meels. Nonetheless, it is important to recognize that the options were avilable.

In addition to satisfying the NSLP goel for calories from saburated fit, the lowest-percent-fint meole offer other netritional benefits. For example, in SY 1998-99, the lowest-percent-fit meals offired in 65 percent of elementary schools and 79 percent of secondery schools were consistent with the NSLP standed for calories from saburited fitt (Exchibits 6.7 and 6.8). The lowent-percent-fin meals offired in two-thirds of elementary schools and 79 percent of secondey schools satisfied the NRC recommendetion for calorias from carbohydrate. In addition, the lowest-percent-fint hachos offered in 21 percent of clema y schools and 14 percent of secondary schools satisfied the NRC recommendatica for sodium.

- Moen Nutrient Content of Low-Fat Lumeh Optlons

Lower levels of fint, saturated fit and sodium in the lowest-percent-fit menle were achioved without compromising the overall matrieat contribution of school humches. As Exhibit 6.9 illustrates, the lowest-percent-fit lunches offired in elementary schools in both SY 1991-92 and SY 1998-99 mot the minimum nutrition standards defined for lunches offared in grades K -6 for protein, vitemin A , vitamin C , calcium and rion. With the euception of ircn in SY 1998-99, which fell just short of the benchmetk, the same wes true for the lowest-percent-fint meals offered in secondary schools (Exhibit 6.10).

The lowest-percent-fit meals offired in both SY 1991-92 and SY 1998-99, in both elementary schools and secondery schools, were, however, low in calories compared to the defined minimum standerds. This was especially true for the lowest-percent-fite meals officed in SY 1998-99, where the mean calorie content was 11 percent (clementry schools) to 15 percent (seccondary schools) lower then the lowest-percent-fiat moals offered in SY 1991-92. The fact that the lowest-percent-fit moals were relatively low in celories is not surprising. Oten (but not always), the lowest-fin option is also the lowest in calories. In addition, the analysis intentionally excludes desserts, which can be high in fit. (As shown in Exhibit 3.13, desserts contributed five percent of the fat in the average school hunch, as served.)

Extibit 6.7

Distriliention of Fat, Carbolydrate, Cholesterol and Sodian In Lewent-Percent-Fat Luaches Oliered in SY 1991-92 and SY 1983-99
 Elementery Schools

${ }^{2}$ Dide for oll problio clementery soboolsia the fint Sohool Nutrition Distary A mesement Study (SNDA-D).
Notere Highlighted rows show NBLP standerd (fat and amburated fint) or NRC reoommeadetion (oarbohydrate, choleatorol, and sodium).

NSLP standands for the peroentrge of calories firon fit and ambured fir were not in eftioct during SY 1991-92.

Erhilitt 68

Distribetion of Fat, Carbohydrate, Cholesterol and Sodium in Lowest-Fercent-Fat Lunches Oliered in SY 1991-92 and SY 1998-99 Secomelary Schools

	8Y 198e-98 (Omberi)	sy 1991-98 (Olimed)
Puromeme of Colories from Fet		
30.1-34.0\%	6	15
34.1-38.0\%	2	9
Morethan 38,0	1	5
10.1-12.0\%	13	18
12.1-14.0\%	5	25
14.1-16.0\%	2	9
More then 16\%	1	2
Purcentage of Calorles firem Cariolyydrate		
Leas than 45\%	2	4
45-55\%	20	40
Cholvereod		
101-133 mg.	1	1
More than 133 mg	<1	2
Sedtre		
801-1,000 mg.	29	4
More than 1,000 mg	56	95
Number of Schools (Unweighted)	677	234

${ }^{1}$ Dine from the present study-the seoced Solvol Nutaition Dietary Asesement Study (SNDA-ID).

 sodium).
NSLP Ptandards for the percentege of celories from fitt and saturated fit were not in efficot during SY 1991-92.

Exhibit 69

Menn Nutriest Profle of Lowen-Perceat-Fat Lumches Ollered in SY 1991-92 and SY 1998-99 Compared to Minhum NSLP Strindarde and NRC Recommendationa: Elementary Schools

	$\begin{gathered} \text { Standary } \\ \text { Elocemancelotion } \\ \hline \end{gathered}$	$\begin{aligned} & \text { sy 1998-s9 } \\ & \text { (0hmed) } \end{aligned}$	$\begin{gathered} \text { sy } 1991-98^{9} \\ \text { (0.10ew) } \end{gathered}$	$\begin{aligned} & \text { Tencest Change } \\ & \text { (5Y 199e-99 wh. } \\ & \text { (3Y 1991-92) } \end{aligned}$
Mean A mount				
Totel Calories		576	645	-11\%**
Protein (gm)		28	29	-30e
Vitamin $\mathbf{A}(\mathrm{mog} R E)$		458	388	+18
Vitamin C (mg)		35	29	+21
Calcium (mg)		460	466	-1
Iron (mg)	-	4.0	4.1	-2
Moan Percesatage of Calorive from.				
Fat (\%)		25.0	31.8	$-21^{* *}$
Setarated Fit (\%)		9.2	12.6	-2700
Carbohydrate (\%)		57.3	51.3	+12**
Mean Amomet				
Cholesterol (mg)		50	68	-26**
Sodium (mg)		992	1,323	$-25 *$
Number of Schools (Unweightad)		398	260	

${ }^{1}$ Dita from the present ctudy-the Scoond School Nutaition Dictery Assesument Study (SNDA-ID).
${ }^{2}$ Data for all protlie clementry sohools in the fint Sohool Nutrition Dietery A meeement Study (SNDDA-).
${ }^{3}$ NRC recommendetion, not NSLP standerd.
Noter: NSLP nutiont thandends are beed ca minimums defined in program reguintions for gredes K-6.
** Difitrence between SY $1998-99$ and SY $1991-92$ in matiotionlly signifioent at the .001 lovel.

Erditht 6.10

Meas Nutricat Preflie of Lowest-Percent-Fat Lusches Otiered in SY 1991-92 and SY 1998-99 Cenopared to Mininsua NSLP Standards and NRC Recommendations:

Secomelary Schools

		$\begin{gathered} \text { sy 1ssesg } \\ \text { (0herel) } \end{gathered}$	$\begin{gathered} \text { sy 1991-98 } \\ \text { (0hech) } \end{gathered}$	Purceat Change (BY 15se-59 v. 8Y 1891-92)
Moen Amount				
Total Calories		591	693	-15\%**
Protein (mm)		29	32	-900
Vitamin A (mog RE)	σ	425	341	+25*
Vitamin C (mg)		44	39	+13
Calcium (mg)		474	476	<1
Irco (mg)		4.2	4.7	-11*
Mean Purcentage of Calorive frome.				
Fat (\%)	\cdots	21.8	27.0	-1900
Saturuted Fax (\%)		8.1	10.5	-23**
Carbolydrate (\%)		59.8	55.7	$+700$
Miona Amount				
Choletarol (mg)		49	65	-25**
Sodium (mg)		1,071	1,436	-25**
Number of Schools (Unweighted)		677	234	

${ }^{1}$ Dine fiom the present study-the secoad Sohool Nutrition Dietmry Amovement Study (SNDA-ID.

${ }^{3}$ NRC recommandetion, not NSLP Ptenderd.
Note: NSLP nutrient standerds are based oa miaimums defined in progran regulations for grades 7-12.
ee Difinemee botwean SY 199999 and SY 1991-92 is eminticelly significent at the . 001 lovel.

The celorie content of the lowest-int huches could be incressed by adding additional servings of firit, vegotebles or broade, or by sding a low-fin, high-cerbolyydrate dessert choice (ag. golatin, animel creckers, finit deseet, low-fis bahed good).

> Among clementary schools, the lewest-percent-fis lunches offiored in SY 1998-99 satisfiod NSLP standerds fior calories from fit and saturuted fit and woll as calories from carbohydrate (Brohibit 6.9). Comperable kunches cffired in clensentiny schools in SY 1991-92 cane close to some of these goels but did not meet them. Among secondary schools (Budibit 6.10), the lowet-percent-fit huches offired at both points in time satisfied NSLP standards for celories from firt as well as the NRC recommendestion for ctlories from carbohydute. The lowest-percent-fint huach offered in secondery schools SY 1998-99 aloo sutiofied the NSLP standerd for calories from saturated fitt (lees then 10\%). The average lunch oftured in SY 1991-92 just exceeded this stendend (10.5\%).

Finally, the lowest-percent-ina lunches offered at both points in tiene and in both clementery and secondary schools were consistent with the NRC recommendetion for cholesterol (Bychibits 6.9 and 6.10). Lunches officed at both points in time and in both types of schools exceeded the NRC recommendation for sodium. The loweet-fit-lunches offired in SY 1998-99 were significently lower in sodium than the lunches offired io SY 1991-92. Nonetheless, on average, the lowest-percent-fist hunches offered in SY 1998-99 continued to exceed the NRC recommendention for sodium.

Average Nutrient Content of Breakfasts Offersd In Public Schools: SY 1998-99 and SY 1891-92

This section presents desa on the average natrient content of breetrints offired in SY 1991-92 and SY 1998-99. In SNDA-L, the nutrient content of the average breatinst offired in each school wes deternined by summing the metrients in en average serving of milk; an average serving of firut, juice or vegetable; and two avernge servings of graina/breads and/or moats/moat alternates. The same approsch was used in generating unweighted averages for the SNDA-II data (see Appendix: E).

Mean Celorle and Mevtrient Content Reletive to Imminumin Nustertion 8tandards

Brhibit 6.11 shows the meen calorie and natrient content of clementary school break fints offered in SY 1991-92 and SY 1998-99. Minimum mutrition standards defined for SBP breakfints (which are applicable to all schools, grades K-12), are shown in the sheded columa. For secondary schoole, optional untrition stenderds for grades 7-12 are also shown.

The average breakint offored in elementry schools in both SY 1999-92 and SY 1998-99 fell short of the minimam calorie level defingd in carrent program rogalations. The relatively low calorie level did not, however, have an adverse effict on the overall moriont contribution of SBP breakfasts. In fict, clamentry school breekfists offired at both points in time provided, on average, more then the minimam required amounts of protein, vitamin A, vitemin C, calcium, and irco.

Elomentary school breakfants offired in SY 1998-99 provided significantly more vitamin C and significantly less protein and calcium then breakfints offired in SY 1991-92. The observed differences

Erhabit 6.11

Mean Calorie and Nutrient Content of Breelffasts Othered in SY 1991-92 and SY 1998-99 Compared to Curreat SBP Standarde

	8Y 198e-990 (Olimed)	$\begin{gathered} 8 Y 1991-92^{9} \\ \text { (0) } \end{gathered}$	$\begin{aligned} & \text { Puromatage } \\ & \text { Change } \\ & \text { (3Y 1999-99 ve. } \\ & \text { SY 1991-92) } \end{aligned}$
Ementary Scloek			
Mean Amount			
Total Calories	462	480	-4\%
Prowin (gm)	15	16	-6**
Vitamin A (mog RE)	278	290	4
Vitmmin C (mg)	40	33	+21**
Calcium (mg)	378	398	-5**
Iron (mg)	4.2	3.8	+11
Number of Schools (Unweighted)	317	166	
Seconlary Scheols			
Mema Ameeat			
Total Calories	483	537	-10\%**
Protain (gm)	16	17	-6*
Vitamin A (mog RE)	265	293	-10
Vitamin C (mg)	42	37	+14
Calcium (m)	386	409	-6**
Iron (mg)	4.1	4.1	0
Number of Schools (Unweighted)	487	121	

${ }^{1}$ Dia from the present study - the socond School Nutition Dietary Avesemment Sudy (SNDA-II).
${ }^{2}$ Dita for all pablie sohools in the first Sohool Nutrition Dietary Aspeemment Study (SNDA-I).
Note: SEP standerds refect minimums defined in current program reguletions for gredes $\mathrm{K}-12$ and an optionel sut of standards for gradee 7-12.

- Difitrance betweea SY 199e-99 and SY 1991-92 is statiaticolly significent at the . 01 lovel.
** Diffirance between SY 1998-99 and SY 1991-92 in stativicelly signifioant at the . 001 lovel.
are inconssquential, however, becmuse clemantary school breakfints offiered at both points in time provided, oa average, more than the minimam required amount of all ley notrients.

Among secondary schoole, breakinsts offiered in both SY 1991-92 and SY 1998-99 provided fower calories than either the minimam defined for grades K-12 or the optional level suggested for grades 7-12 (Evchibit 6.11). This was eapecially true for breeldiats offered in SY 1998-99. The mema calorie coateat of secondary school breekfasts offired in SY 1998-99 was about 10 peroent lower than brealfiasts cffired in SY 1991-92. In spite of lower-than-desired calorie levels, secondary school breakfests offered at both points in time more then satisfied the required minimum standerds for all trgeted mutrieats as well as the more stringent optional standerds.

Secondary school brsaldints offered in SY 1998-99 provided significently less protein sad ceiciven than brealcinats offered in SY 1991-92. Agnin, however, the relative importance of differences in mean nutrient content is inconsequeatial becmuse brealfists offered at both points in time more then satisfied the suggested standands.

Percentage of Calories from Tctal Fat and Sedureted Fat

On average, breakfints offiered in both elementary schools and secondary schools in SY 1991-92 came close to meeting the standard for the percentage of calories from fits but erceeded the standerd for the percentage of calories from saturated firt by a substantial margin (Exhibit 6.12). Break-insts officred in SY 1998-99 provided a significantly smaller percentage of calories from both totel fat and saturated fint. As a consequence, the average breakintt offiered in SY 1998-99, in both clementary schools and secondary schools, was consistent with SBP standards for these metrients.

Percentage of Schools Meating Situndarib for Fet and Saturneted Fat

There wes a marked increase in the mumber of schools that met SBP standards for totel fint and seturnted fat between SY 1991-92 and SY 1998-99 (Evchibit 6.13). In SY 1991-92, fewer then half of all poblic schools offiered brealciests that provided no more than 30 percent of calaries from fint. The picture in SY 1998-99 was dramatically dificrent. In SY 1998-99, breakfists offered in more than three-quarters of elementiry schools and secondary schools met the standard for caloriss from fit. This represents an overall increase of 62 percent (secondary schools) to 84 percent (elementary schools) in the proportion of schools meeting the SBP standerd for crlories from fit.

The incresse in the mumber of schools meeting the standard for saturated fatt wes even more dramatic. In SY 1991-92, fewer than seven perceat of schools satisfied this standard. In SY 1998-99, well over half of all schools met the standard.

Chrolesterol, Sodium and Carbohydrate Content

In both elementary schools and secondary schools, breakfists offered in both SY 1991-92 and SY 1998-99 were consistent with NRC recommendetions for cholesterol content and for the percentnge of calorias from carbohydrate (Exhibit 6.14). Brealfinsts offered in SY 1998-99 were significantly lower in cholesterol and higher in calories from carbohydrate than breakfists offered in SY 1991-92; however, these differences did not affect conclusions about whether NRC recommendations were mot.

Exillbit 6.12 Betweon SY $1991-92$ and SY 1998-99 There Wes a Significant Decresee in the Relative Fot and Saturated Fat Content of school Breakfasts, as Offered

Elementary School Breakfasts

Secondary School Breakfasts

* Difierence is statistically signilicant at the .001 leval.

Note: SBP standerds for the percentage of calories from fat and saturated fat were not in effect during SY 1891-92.

Exhibit 6.13 For Breakfests as Offered, the Percentage of Schools That Mot Standards for Total Fat and Saturated Fat Has Increased Subetantially Since SY 1901-02

Elemontary Schools

Secondary Schools

* Difierence is statistically significant at the .001 level.

Note: SBP standerds for the percentage of calories from fat and saturated fat were not in effect during SY 1991-82.

Exhlbit 6.14 Breakfacts Offered in 2 Y 1998-99 Were Significantly Lower in Choleeterol and Sodlumn lisid Higher in Calories from Carbohydrate than Brealtsiusts Offored In SY 1901-92

*. Dilienence is statietically signilicent at the .001 level.

In SY 1991-92, breakfists offered in both elementiry schools and secondary schools ewcoeded the recommended level of sodium. In SY 1998-99, mean sodium conteat of brealciasts offiered in both types of schools was significantly lower. The average brealfast offired in elementary schools satisfiod the NRC recommendation for sodium and the average brealfist offered in secondary schools ceme very close to meeting the recommendetion.

References

Burghand, J., A. Gordon, N. Chepmea, et all (1993). The School Nutritton Dietary Assessment Study: School Food Service, Meals Offired, and Dietary Intaless. Alectendria, VA: U.S. Depertment of Agriculture, Food and Nutrition Service.

Fox, M.K, M.K. Crepinsek, N. Burstein, et al. (1998). Evaluation of the Nutrient Standard Menu Planning Demonstration: Final Report. Alecandria, VA: U.S. Depertment of Agriculture, Food and Nutrition Service.

Fraker, T. (1988). The Sodhum and Macromutrient Content of USDA School Lunches: Pinal Report. Alexandria, VA: U.S. Department of Agriculture, Food and Nutrition Service.

National Research Council (1989a). Diet and Health: Implications for Reducing Chrowic Disease Risk Washington, DC: National Academy Press.

National Research Council (198\%). Recommended Dietary Allowances, 10th edition. Weshington, DC: National Acsademy Press.

St. Pient, R, M.K. Fox, M. Puma, et al. (1992). Child Nutrition Operations Sundy: Second Year Report. Aleorendria, VA: U.S. Department of Agriculture, Food and Nutrition Service.
U.S. Department of Agriculture, Food and Nutrition Service (1992). Administrative deta.
U.S. Depertment of Agriculture, Food and Nutrition Service (1998). A Memu Plamner for Healthy School Meals. Alerendria, VA: Food and Nutrition Service (Appeadix 4).
U.S. Department of Agriculture, Food and Nutrition Service (2000). Administrative deta.
U.S. Depertments of Healhh and Humen Services and Agriculture (1990). Nutrition and Your Healoh: Dietary Guddelines for Americans, 3rd edition. Weahington, DC: U.S. Government Printing Office.

Wellisch, J., S. Hanes, L. Jordon, et al. (1983). The National Evaluation of School Nutrition Programs: Vohumes 1 and 2. Santa Monica, CA: Systems Development Corporation.

Appendix A
Supplementary Exhibits: Nutrient Content of NSLP Lunches

Enhibit A. 1
Mean Calorie and Nutrieat Content of Average Lumches Served to Students in SY 1998-99

	Elomeatary		Secomilary Schools		$\begin{aligned} & \text { Middle } \\ & \text { Scheote } \end{aligned}$		$\begin{aligned} & \text { High } \\ & \text { Scheols } \end{aligned}$		Al Saiteots	
	Mean Amount (S.E)									
Total Calcries	695	(6.9)	724	(5.5)	712	(6.7)	735	(7.4)	705	(5.3)
Total Fat (gm)	26	(0.3)	28	(0.3)	27	(0.4)	28	(0.4)	26	(0.3)
Setierated Fat (gm)	9	(0.2)	10	(0.1)	10	(0.1)	10	(0.2)	9	(0.1)
Carbohydrate (gm)	89	(1.1)	91	(0.9)	90	(1.2)	92	(1.1)	90	(0.9)
Protein (gm)	29	(0.2)	30	(0.2)	30	(0.2)	31	(0.2)	30	(0.2)
Percentage of Calories from:										
Fat (\%)	33.1	(0.3)	34.5	(0.2)	34.3	(0.3)	34.6	(0.3)	33.6	(0.2)
Seturated Fat (\%)	11.9	(0.1)	12.1	(0.1)	12.1	(0.1)	12.2	(0.1)	12.0	(0.1)
Carbohydrate (\%)	51.4	(0.3)	50.0	(0.3)	50.3	(0.3)	49.7	(0.3)	50.9	(0.2)
Vitamin A (mog RE)	437	(15.7)	390	(10.1)		(15.2)	388	(10.2)	420	(11.5)
Vitamin C (mg)	27	(1.3)	29	(0.8)	29	(1.1)	30	(1.0)	28	(1.0)
Calcium (mg)	478	(4.0)	475	(3.9)	472	(4.9)	478	(5.3)	477	(3.1)
Iron (ing)	4.4	(0.1)	4.7	(0.0)	4.6	(0.1)	4.8	(0.1)	4.5	(0.0)
Cholesterol (mg)	65	(0.9)	68	(1.0)	66	(1.3)	69	(1.0)	66	(0.8)
Sodium (mg)	1,259	(15.3)	1,382	(14.5)	1,346	(16.4)	1,418	(19.5)	1,303	(11.7)
Number of Schools (Unweighted)	398		677		339		338		$1,075$	

Sourco: Woighted nutrient anelycie of menu and meel production dita for one week between September 1998 and May 1999.

Eriabit A. 2

Mean Percentage of Recommended Dietary Allowances Provided in Average Lunches Served to Students in SY 1998-99

Source: Weighted nutrient analycie of menu and meal production dena for one week between September 1998 and May 1999.

Endibit A. 3

Perceatage of Schools in Which the Average Lanch Served to Studeats Met the Mininum Nutrition Standards Defined in Curreat NSLP Regulations

	Bementary Scheols	Secomdary Schools	All Schools
	Percentage of Schools		
Celorios	60\%	15\%	44\%
Protein	100	100	100
Vitamin A	98	64	86
Vitamin C	86	78	83
Celcium	100	85	95
Inon	87	58	77
Number of Schools (Unweighted)	398	677	1.075

Souroe: Weighted nutient analycis of meau and meal prodvetion data for one wock between September 1998 and May 1999.

Exhibit A. 4

Distribution of Cholesterol and Sodium in Average Lunches

 Served to Students in SY 1998-99| | Elementary
 Schools | Secondary
 Schools | All
 Schools | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of Schools | | | | | | | |

Cholesterol
100.0 mg
$>100.0 \mathrm{mg}$

Sodium

s 40.0 mg			
$800.1-1,000.0 \mathrm{mg}$	8	3	6
$>1,000.0 \mathrm{mg}$	92	97	94

Number of Schools (Unweighted)	398	677	1,075

Notes: Highlighted rows show NRC recommendations (equivalent to one-third of recommended maximum daily intake for cholesterol and sodium).
Column sections may not sum to 100 percent due to rounding.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 5

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System
 Elementary Schools

	Menu Planning System			
	Traditional Food-Based	NSMPI ANSMP	Enhanced Food-Based	All Systems
	Percentage of Schools			
Defined NSLP Standards	78%	$55 \%^{*}$	70%	68%
Calories	100	100	100	100
Protein	98	100	97	98
Vitamin A	84	88	87	86
Vitamin C	100	100	100	100
Calcium	95	96	90	93
Iron	20	20	25	21
Percentage of Calories from Total Fat	13	18	17	15
Percentage of Calories from Saturated Fat				
NRC Recommendations	16	24	16	18
Percentage of Calories from Carbohydrate	98	99	99	99
Cholesterol	<1	<1	2	1
Sodium	155	108	122	398
Number of Schools (Unweighted)				

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (7 schools).
Data for 13 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

* Difference between the traditional food-based system and NSMP/ANSMP is statistically significant at the .01 level.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 6

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System Secondary Schools

	Menu Planning System			
	Traditional Food-Based	NSMP/ ANSMP	Enhanced Food-Based	All Systems
Defined NSLP Standards	Percentage of Schools			
Calories	17%	24%	18%	20%
Protein	100	100	100	100
Vitamin A	62	59	73	65
Vitamin C	72	84	82	79
Calcium	87	81	91	86
Iron	61	60	58	60
Percentage of Calories from Total Fat	11	15	18	14
Percentage of Calories from Saturated Fat	8	15	19	13
NRC Recommendations				
Percentage of Calories from Carbohydrate	11	14	20	14
Cholesterol	93	100	97	96
Sodium	<1	<1	0	<1
Number of Schools (Unweighted)	282	175	197	677

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSIMP (13 schools).
Data for 23 schools that reportod use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the differences between the traditional food-besed system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 7

Mean Nutrient Profile of Average Lunches Served in SY 1998-99, by Menu Planning System, Compared to NSLP Standards and NRC Recommendations All Schools

	Standard/ Recommendation	Menu Planning System			
		Traditional Food-Based	NSMP/ ANSMP	Enhanced Food-Based	All Systems
Mean Percentage of RDA					
Total Calories	1\%\%	34\%	33\%	34\%	33\%
Protein		92	88	91	91
Vitamin A	4 4%	59	55	63	59
Vitamin C	48\%	58	56	58	58
Calcium	* (4\%\%***	52	51	52	52
Iron		42	40	40	41
Mean Percentage of Calories from.					
Total Fat	$\text { 4 4 } 0 \text { " }$	34.3\%	33.1\%	$32.9 \%^{\dagger}$	33.6\%
Saturated Fat	4 464	12.5	11.8	$11.6{ }^{\prime \prime}$	12.0
Carbohydrate	, Wsav**	50.2	51.3	51.5	50.9
Mean Amount					
Cholesterol (mg)		68	63	65	66
Sodium (mg)		1,321	1,286	1,303	1,303
Number of Schools (Unweighted)		437	283	319	1,075

${ }^{1}$ NRC recommendation, not NSLP standard.
Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (20 schools).
Data for 36 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.
${ }^{1}$ Difference between means for the traditional and enhanced food-based systems is statistically significant at the .01 level.
It Difference between means for the traditional and enhanced food-based systems is statistically significant at the .001 level.
Source: Weighted nutrient analysis of meal and menu production data for one week between September 1998 and May 1999.

Exhibit A. 8

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System All Schools

	Menu Planning System			
	Traditional Food-Based	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMP } \end{aligned}$	Enhanced Food-Based	All Syatems
	Percentage of Schools			
Defined NSLP Standards				
Calories	57\%	44\%	52\%	51\%
Protein	100	100	100	100
Vitag \sim A	86	85	89	87
Vitamin C	80	87	85	84
Calcium	95	93	97	95
Iron	83	83	79	82
Percentage of Calories from Total Fat	17	18	23	19
Percentage of Calories from Saturated Fat	12	17	18	15
NRC Recommendations				
Percentage of Calories from Carbohydrate	14	21	17	17
Cholesterol	97	100	98	98
Sodium	<1	<1	1	1
Number of Schools (Unweighted)	437	283	319	1,075

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (20 schools).
Data for 36 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the differences between the traditional food-based system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 9

Mean Nutrient Profile of Average Lunches Served in SY 1998-99, by Menu Planning System, Compared to NSLP Standards and NRC Recommendations Middle Schools

${ }^{1}$ NRC recommendation, not NSLP standard.
Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (6 schools).
Dak for 11 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.
${ }^{\dagger}$ Difference between traditional and enhanced food-besed systems is statistically significant at the .01 level.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 10

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System Middle Schools

	Menu Planning System			
	Traditional Food-Based	NSMP/ ANSMP	Enhanced Food-Based	All Systems
	Percentage of Schools			
Defined NSLP Standards				
Calories	23%	23%	24%	23%
Protein	100	100	100	100
Vitamin A	65	48	72	62
Vitamin C	79	88	85	84
Calcium	86	82	91	87
Iron	58	56	55	56
Percentage of Calories from Total Fat	9	15	22	14
Percentage of Calories from Saturated Fat	7	12	21	13
NRC Recommendations	11	11	25	15
Percentage of Calories from Carbohydrate	91	100	97	95
Cholesterol	0	0	0	0
Sodium	140	90	98	339
Number of Schools (Unweighted)				

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (6 schools).
Data for 11 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the differences between the traditional food-based system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 11

Mean Nutrient Profile of Average Lunches Served in SY 1998-99, by Menu Planning System, Compared to NSLP Standards and NRC Recommendations
 High Schools

[^27]Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (7 schools).
Data for 12 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the differences between the traditional food-besed system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 12
Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Menu Planning System High Schools

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (7 schools).
Data for 12 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the differences between the traditional food-based system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 13

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch, by Relative Fat Content of Average Lunch Served

	Relative Amount of Fat in Average Lunch, as Served ${ }^{1}$			
	Low	Moderate	High	Highest
	Percentage of Schools			
Standard/Recommendation				
Defined NSLP Standards	52%	55%	39%	55%
Calories	100	100	100	100
Protein	91	89	84	75
Vitamin A	89	88	74	74
Vitamin C	97	96	95	90
Calcium	94	86	69	68
Iron	100	0	0	0
Percentage of Calories from Total Fat	53	9	1	0
Percentage of Calories from Saturated Fat				0
NRC Recommendations	71	7	0	0
Percentage of Calories from Carbohydrate	100	99	97	93
Cholesterol	2	<1	0	<1
Sodium	206	527	200	142
Number of Schools (Unweighted)				

${ }^{1}$ Low-fiat is defined as no more than 30 per cent of calories from fast, moderato-fat as more than 30 percent up to 34 percent; high-fitt as more than 34 percent up to 38 percent; and highest-fit as more than 38 percent. Schools in the low-fiat group met the NSLP standard for percentage of calories from fat.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 14

Mean Nutrient and Calorie Content of Lunches, Using Alternative Methodology for Unweighted Analysis Elementary Schools

${ }^{1}$ NRC recommendation, not NSLP standard.

- Difference between weighted and unweighted analyses is statistically significant at the .01 level.
** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Weighted and unweighted nutrient analyses of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 15
Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis Elementary Schools

** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 16

Mean Nutrient and Calorie Content of Lunches, Using Alternative Methodology for Unweighted Analysis Secondary Schools

Number of Schools (Unweighted)
${ }^{1}$ NRC recommendation, not NSLP standard.

- Difference between weighted and unweighted analyses is statistically significant at the .01 level.
** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Weighted and unweighted nutrient analyses of menu and meal production data for one week between September 1998 and May 1999.

Exhibit A. 17

Percentage of Schools That Satisfied NSLP Standards and NRC Recommendations for Lunch Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis Secondary Schools

** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Menu and meal production data for one week between September 1998 and May 1999.

Appendix B
Supplementary Exhibits: Nutrient Content of SBP Breakfasts

Exhibit B. 1
Mean Calorie and Nutrient Content of Average Breakfasts Served to Students in SY 1998-99

Total Calories	ElementarySchools		$\begin{aligned} & \text { Secondary } \\ & \text { Schools } \end{aligned}$		Middle Schools		High Schoola		All Schools	
	Mean Amount (S.E.)									
	447	(5.7)	483	(6.3)	465	(7.4)	501	(7.6)	459	(4.9)
Total Fat (gm)	13	(0.3)	15	(0.3)	14	(0.4)	16	(0.4)	14	(0.3)
Saturated Fat (gm)	5	(0.1)	6	(0.1)	5	(0.1)	6	(0.2)	5	(0.1)
Carbohydrate (gm)	68	(1.0)	71	(1.1)	70	(1.3)	73	(1.3)	69	(0.8)
Protein (gm)	15	(0.2)	16	(0.2)	16	(0.2)	17	(0.3)	15	(0.2)
Percentage of Calories from:										
Fat (\%)	26.5	(0.4)	28.3	(0.4)	27.4	(0.5)	29.1	(0.5)	27.1	(0.3)
Saturated Fat (\%)	10.1	(0.2)	10.5	(0.2)	10.1	(0.2)	10.8	(0.3)	10.2	(0.2)
Carbohydrate (\%)	61.5	(0.5)	59.2	(0.5)	60.2	(0.6)	58.2	(0.6)	60.7	(0.4)
Vitamin A (mcg RE)	254	(4.4)	226	(4.9)	227	(6.0)	225	(5.7)	244	(3.9)
Vitamin C (mg)	37	(1.1)	39	(1.0)	39	(1.1)	38	(1.4)	38	(0.9)
Calcium (mg)	354	(4.5)	350	(5.3)	346	(6.0)	355	(6.6)	353	(3.9)
Iron (mg)	3.8	(0.1)	3.8	(0.1)	3.7	(0.1)	3.9	(0.1)	3.8	(0.1)
Cholesterol (mg)	43	(2.9)	55	(2.2)	50	(2.6)	59	(3.0)	47	(2.2)
Sodium (mg)	574	(10.5)	672	(12.8)	621	(12.7)	723	(17.9)	607	(9.5)
Number of Schools (Unweighted)	317		487		245		242		804	

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 2

Mean Percentage of Recommended Dietary Allowances in Average Breakfasts Served to Students in SY 1998-99

	Elementary Schools		Secondary Schools		Middle Schools		High Schools		All Schoola	
	Mean (S.E.)									
Total Calories	23\%	(0.3)	20\%	(0.3)	20\%	(0.3)	20\%	(0.3)	22\%	(0.2)
Protein	52	(0.7)	34	(0.5)	35	(0.5)	34	(0.6)	46	(0.6)
Vitamin A	39	(0.7)	25	(0.5)	25	(0.7)	25	(0.6)	34	(0.6)
Vitamin C	81	(2.5)	72	(1.9)	78	(2.2)	67	(2.4)	78	(1.9)
Calcium	43	(0.6)	29	(0.4)	29	(0.5)	30	(0.5)	38	(0.5)
Iron	37	(0.7)	28	(0.7)	28	(0.9)	29	(0.8)	34	(0.6)
Number of Schools (Unweighted)	317		487		245		242		804	

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 3

Percentage of Schools in Which the Average Breakfast Served to Students Met the Nutrition Standards Defined in Current SBP Regulations

	Elementary Schools	Secondary Schools		All Schools
	Minimum Standard	Minimum Standard	Optional Standard	Minimum Standard
	Percentage of Schools			
Total calories	8%	20%	8%	12%
Protein	98	100	93	98
Vitamin A	85	60	47	77
Vitamin C	96	97	94	96
Calcium	94	90	78	93
Iron	78	72	57	76
Number of Schools (Unweighted)	317		487	804

Note: \quad Minimum standards cover grades K-12. The optional standards cover grades 7-12.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 4

Distribution of Cholesterol and Sodium in Average Brealfasts Served to Students in SY 1998-99

$\begin{array}{lccc}\hline & \begin{array}{c}\text { Elementary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { Secondary } \\ \text { Schools }\end{array} & \begin{array}{c}\text { All } \\ \text { Schools }\end{array} \\$\cline { 3 - 4 } \& \& \& Percentage of Schools\end{array}$]$

Notes: Fighlighted rows show NRC recommendetions (equivalent to ono-fourth of recommended maximum deily intake for choletterol and sodium).
Columns may not sum to 100 percent due to rounding.
Source: Weighted nutrient analysis of menu and meal prodvetion data for one week between September 1998 and May 1999.

Exhibit B. 5

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System Elementary Schools

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (4 schools).
Dine for 13 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.
** Difference between the traditional food-based system and NSMP/ANSMP is statistically significant at the .001 level.
Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 6

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System Secondary Schools

Notes: Data for NSMP and ANSIMP were combined because of small sample size for ANSMP (10 schools).
D ia for 18 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

* Difference between the traditional food-based system and NSMPP/ANSMMP is statistically significant at the .01 level.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 7
Mean Nutrient Profile of Average Breakfasts Served in SY 1998-99, by Menu Planning System, Compared to SBP Standards and NRC Recommendations All Schools

${ }^{5}$ NRC recommendation, not SBP standard.
Notes: Data for NSMMP and ANSMP were combined because of small sample size for ANSMP (15 schools).
Deana for 31 schools that reported use of some other menu planning system are not presented separately because of small sample sine. These schools are included in the "All Systems" column.
** Difference between the traditional food-based system and NSMP/ANSMP is statistically significant at the .001 level.

* Difference between the traditional food-based system and NSMMP/ANSMP is statistically significant at the .01 level.

Source: Weighted nutrient analysis of meal and menu production data for one week between September 1998 and May 1999.

Exhibit B.8

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealdast, by Menu Planning System All Schools

Notes: Data for NSMP and ANSMP were combined because of small sample sine for ANSMP (13 schools).
Date for 31 schools that reported use of some other menu planning system are not presented separately because of small sample sine These schools are included in the "All Systems" column.
** Difference between the traditional food-based system and NSMP/ANSMP is statistically significant at the .001 level.
${ }^{1}$ Difference between the traditional and enhanced food-besed systems is statistically signific nt at the .01 level.
Source: Weighted nutrient analysis of menu and meal production data for oe week between September 1998 and May 1999.

Exhibit B9

Mean Nutrient Profile of Average Brealdasts Served in SY 1998-99, by Menu Planning System, Compared to SBP Standards and NRC Recommendations Middle Schools

		Menu Planning System			

${ }^{1}$ NRC recommendation, not SBP standard.
Notes: Data for NSMP and ANSMP were combined because of anal sample sine for ANSMP (4 schools).
Din for 9 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

* Difference between the traditional food-besed system and NSMP/ANSNMP is statistically significant at the .01 level.

Source: Weighted nutrient analysis of meal and menu production data for one week between September 1998 and May 1999.

Exhibit B. 10
Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Brealdast, by Menu Planning System Middle Schools

	Mema Planaling Sydem			
	Traditional Food-Based	$\begin{aligned} & \text { NSMP/ } \\ & \text { ANSMP } \end{aligned}$	Enhameed Food-Based	
	Perceatage of Schools			
Deflined SBP Standards				
Total Calories	9\%	7\%	7\%	8\%
Protein	97	92	98	96
Vitamin A	48	53	37	48
Vitamin C	99	97	96	98
Calcium	82	73	70	77
Iron	53	72	38	54
Percentage of Calaries from Total Fat.	62	81	73	71
Percentage of Calories from Seturated Fat	41	69*	55	52
NRC Recommendations				
Percentage of Calories from Carbokydrate	73	84	81	79
Cholesterol	75	85	86	81
Sodium	39	64	63	53
Number of Schools (Unweighted)	111	62	63	245

Notes: Data for NSMP and ANSMPP were combined becsuse of amall sample size for ANSMP (4 schools).
D.a for 9 schools that reported use of some other menu planning system are not presented seperatily because of small sample size. These schools are included in the "All Sywtems" column.

* Difference between the traditional food-besed syitem and NSMP/ANSMP is statistically significant at the .01 lovel.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 11
Mean Nutrient Profile of Average Breakfasts Served in SY 1998-99, by Menu Planning System, Compared to SBP Standards and NRC Recommendations

High Schools

${ }^{1}$ NRC recommendation, not SBP standard.
Notes: Data for NSMMP and ANSMP were combined because of small sample size for ANSMP (5 schools).
Data for 9 schools that reported use of some other menu planning system are not presented separately because of small saraple size. These schools are included in the "All Systems" column.
" Difference between the traditional and enhanced food-besed systems is statistically significant at the .001 level.
Source: Weighted nutrient analysis of meal and menu production data for one week between September 1998 and May 1999.

Exhibit B. 12

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Menu Planning System High Schools

Notes: Data for NSMP and ANSMP were combined because of small sample size for ANSMP (5 schools).
Data for 9 schools that reported use of some other menu planning system are not presented separately because of small sample size. These schools are included in the "All Systems" column.

None of the difficrenoes between the traditional food-besed system and NSMP/ANSMP or between the traditional and enhanced food-based systems is statistically significant.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 13

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast, by Relative Fat Content of Average Breakfast Served

${ }^{1}$ Low-fat is defined as no more than 30 percent of calories from fit. Schools in this group met the SBP standard for percentage of calories from fat. All schools not included in the low-fit group are included in the higher-fit group.

Source: Weighted nutrient analysis of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 14

Mean Nutrient and Calorie Content of Breakfasts, Using Alternative Methodology for Unweighted Analysis Elementary Schools

${ }^{1}$ NRC recommendation, not SBP standard.

* Difference between weighted and unweighted analyses is statistically significant at the .01 level.
** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Weighted and unweighted nutrient analyses of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 15

Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis Elementary Schools

* Difference between weighted and unweighted analyses is statistically significant at the .01 level.

Source: Menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 16
Mean Nutrient and Calorie Content of Breakfasts, Using Alternative Methodology for Unweighted Analysis Secondary Schools

${ }^{1}$ NRC recommendation, not SBP standard.

- Difference between weighted and unweighted analyses is statistically significant at the .01 level.
${ }^{* *}$ Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Weighted and unweighted nutrient analyses of menu and meal production data for one week between September 1998 and May 1999.

Exhibit B. 17
Percentage of Schools That Satisfied SBP Standards and NRC Recommendations for Breakfast Based on Weighted and Unweighted Analyses, Using Alternative Methodology for Unweighted Analysis Secondary Schools

- Difference between weighted and unweighted analyses is statistically significant at the .01 level.
** Difference between weighted and unweighted analyses is statistically significant at the .001 level.
Source: Menu and meal production data for one week between September 1998 and May 1999.

Appendix C
 Study Implementation

This appendix describes the protocols and instruments used to collect data for the SNDA-II study. Two different survey efforts were used to collect data: a telephone interview of SFA directors and a mail survey of cafeteria managers. The two surveys were implemented concurrently. The following paragraphs describe the survey instruments, the data collection schedule, and the procedures used to encourage participation and submission of complete data. Copies of all instruments are included at the back of this appendix.

Data Collection Schedule and Instruments

Data collection began in September 1998. The initial plan called for data collection to be completed by the end of December 1998. However, because many schools were unable to participate in the study or to complete data collection requirements during this time frame, the data collection period was extended and ran through May 1999.

Data collection instruments were carefully designed and went through two rounds of pretesting to ensure that instruments and protocols facilitated the uniform reporting of data and minimized response burden. In addition, survey materials used to collect information on meals served in school food service programs were designed to be comparable to those used in the first SNDA study (SNDA-I) so that nutrient analysis results for the two studies could be compared.

Telephone Interview of SFA Directors

The SFA director interview was used to collect basic descriptive information about school food service operations. Information was collected about operations at the SFA level as well as about selected characteristics of the specific schools participating in the study. Items included in the interview covered participation in the SBP and NSLP, enrollment, numbers of students approved for free and reduced-price meal benefits, menu planning practices, selected food purchasing practices, strategies used in setting prices for reimbursable meals and a la carte foods, use of foods from commercial vendors, and use of food service management companies.

The interview included 26 questions, most of which were asked about each sampled school, and took an average of 19 minutes to complete. Interviewers in Abt's telephone survey center in Amherst, Massachusetts conducted the interviews using computer-assisted personal interview (CAPI) technology.

Appointments for the interview were scheduled with SFA directors when they were contacted by phone, approximately six weeks before data collection was to begin, to remind them about the study and the upcoming data collection. This telephone contact was also used to schedule a target week for the mail survey of cafeteria managers, as described in a subsequent section. As a followup, respondents received
a letter that confirmed the date and time of the appointment. The letter also included a hard copy of the few survey items that required data from administrative records. SFA directors were encouraged to record needed information on the hard copy form prior to the interview. This included, for each of the selected schools in the district, information on enrollment, average daily attendance, numbers of students not eligible to participate in breakfast or lunch programs, and numbers of students approved for free and reduced-price meals.

Respondents who missed the scheduled appointment or were not able to complete it at the appointed time were recontacted until the interview was completed. Respondents who failed to complete the interview after 30 or more contact attempts were referred to the project director for followup. No respondent was considered a final refusal until the project director was unsuccessful in contacting him or her and/or in securing; participation.

Mail Survey of Cafeteria Managers

Cafeteria managers in sampled schools (or other respondents designated by the SFA director) were asked to complete a self-administered survey that included a number of different data collection instruments and forms. The primary focus of the survey was to collect detailed information on breakfasts and lunches served during a specified five-day period, referred to as the target week. For this reason, all survey forms were bound together into a booklet which was referred to as the menu survey. In turn, the menu survey booklet was packaged with other materials and response aids designed to facilitate collection of uniform data, reduce confusion, and minimize response burden.

Menu survey packets contained all materials needed by cafeteria managers to record required information on the foods and beverages served to students during the target week. In addition to data collection forms, the packet included an instruction manual that provided detailed guidelines for completing each form as well as sample completed forms and three laminated reference guides. The reference guides provided instructions on how to describe foods adequately and completely, how to collect package labels, and how to organize data collection activities each day of the target week. Zip-loc bags were provided for storing collected package labels. Each packet was presented in a large accordion folder with labeled pockets designed to assist respondents in locating and organizing materials. Color-coded forms, color printing, tabs, and other special formatting features were used to create an attractive, user-friendly package.

Menu Survey Forms

The menu survey booklet included several different forms designed to collect specific types of information about meals served during the target week.

- The Everyday Reimbursable Foods Form was used to describe foods and beverages offered to students as part of a USDA-reimbursable meal every day (ie., each day of the target week). This form alleviated the need for respondents to record these foods multiple times on forms used to collect information on daily offerings (see below). Separate forms were completed for breakfast and for lunch.

The form was designed to collect detailed information needed to complete an accurate nutrient analysis, including complete descriptions of each food item (e.g., full and brand names, method of cooking, use of salt and/or added fat); the grades served; the portion
size, including, if applicable, different portions for different grades; and the number of portions served in reimbursable meals. Respondents were cautioned to record only foods included in USDA-reimbursable meals (i.e., to exclude foods offered only a la carte or served only to adults) and, for foods served in both reimbursable meals and as an a la carte item, to exclude a la carte servings when reporting the number of portions served.

- A Daily Menu Form was used, each day, to describe foods and beverages offered as part of a reimbursable meal, with the exception of those items already recorded on the Everyday Reimbursable Foods Form. A separate Daily Menu Form was completed each day. Separate forms were completed for brealfast and lunch. The information recorded on the Daily Menu Form was identical to the Everyday Reimbursable Foods Form.
- The Recipe Form was used to list and describe ingredients, yield, and preparation information for items identified as "recipes" on the Daily Menu Forms or the Everyday Reimbursable Foods Form - that is, foods prepared from scratch or by combining two or more foods or ingredients. To minimize burden and promote submission of complete data, cafteria managers were encouraged to attach copies of recipes in lieu of re-copying recipes onto recipe forms.
- Respondents were asked to provide package labels for most foods and to ensure that the label in Juded mutrition information or, at a minimum, a list of ingredients and a portion size. The Nutrition Information Form was used to record product mutrition information or manufacturer's contact information when package labels with mutrition information could not be provided (i.e., label did not inchude nutrition information, label was difficult to remove, or label was not available).

Other Data Collection Forms Included in the Menu Survey Booklet

Three other data collection instruments were included in the memu survey booklet. These instruments were clearly separated from the meau survey forms by labeled tabs. Instructions for completing each form were provided in the instruction mamual.

- The Daily Meal Counts Form was used to report the number of USDA-reimbursable breakfasts and lunches served, by reimbursement category, each day of the target week. The form also requested information on total a la carte sales (brealfast and lunch combined) for the target week.
- The A la Carte Foods Checkdist was used to identify foods and beverages offered a la carte. Respondents simply checked off foods and beverages that were available for a la carte purchase on one specific day during the target week. Space was also provided for respondents to write in items that did not appear on the checklist. Each school was randomly assigned an "a la carte day" on which this form was to be completed. The form was identical to the one used in SNDA-I.
- The Meal Service Questionnaire was a separate self-administered questionnaire that gathered descriptive information on characteristics of food service programs in each participating school. Information was collected on the prices charged for full- and recucedprice meals, the types of meal service offered, alternative sources of food available to students, implementation of menu changes to address the Dietary Guidelines for Americans, and the perceived impact of these changes on meal acceptability. The
questionnaire included 19 items. Respondents were told they could complete the questionnaire any time prior to or during the target week.

The estimated response burden for completing the entire memu survey booklet (incleding the Daily Meal Counts Form, the Meal Service Questionnaire, and the A la Carte Foods Checklist) was approximately 810 hours, depending on the complexity of the menu.

Procedures Used to Implement the Menu Survey

A number of procedures were used to promote cooperation with the menu survey, to ensure that respondents understood how to fill out survey forms, and to assist respondents, however necessary, in completing all survey materials.

As noted previously, each SFA was assigned a specific target week for the menu survey. All participating schools in an SFA were expected to complete the menu survey during the same week. SFAs were randomly assigned to a specific target week with two potential backups. Final decisions about target week dates for each SFA were made with the SFA director.

Reminder calls were made to all SFA directors and cafeteria managers approximately three weeks before the target week. Target week dates were confirmed and rescheduled if necessary. SFA directors were advised about the expected delivery date of menu survey packets and were encouraged to review data collection requirements with cafeteria managers prior to the target week (materials arrived at least two weeks before the target week). Finally, both SFA directors and cafeteria managers were informed about the availability of technical assistance and were provided with a toll-free number. (The toll-free number was also prominently displayed in several places in the memu survey materials).

After this initial reminder, several followup contacts were made with cafeteria managers and SFA directors, as described below.

- One week prior to the target week, specially trained technical assistance staff called SFA directors to confirm receipt of survey materials, encourage review of materials with cafeteria managers if this had not yet taken place, answer questions regarding the materials or the study in general, and reconfirm the SFA's commitment to participating in the study.
- On Tuesday of the target week, technical assistance staff called cafeteria managers to confirm that they had begun the menu survey and to provide clarification and guidance as needed. Because this call was placed after cafeteria managers had completed one day of the menu survey, technical assistance staff were able to provide valuable assistance.

In addition to answering questions posed by cafeteria managers, technical assistance staff reviewed general data collection requirements as well as specific issues identified as particularly problematic during the pretests, such as how to handle milk counts, separating a la carte servings from reimbursable servings, when to complete a Recipe Form, and when and how to use Nutrition Information Forms. Additional review points were added as the study progressed and lnowledge accumulated about other potentially problematic issues.

Cafeteria managers were encouraged to call the toil-free telephone number at any time during or after the target week and were asked to retvern completed survey materials no later than one week after the target week.

- Two weeks after the target week, project staff contacted cafeteria managers who had not returned completed survey materials. If the survey had not been completed, a new target week was assigned and, if necessary, another set of survey materials was shipped.

Subsequent calls were made, approximately every other week or in other intervals surrounding target dates for completion identified by respondents, to assess progress on completion of survey materials. Because many schools needed a substantial amount of time to complete the materials, considerable leeway was given to schools that appeared to be sincerely interested in cooperating. SFA directors were asked to intervene after lengthy delays in schools where managers appeared to be less interested in cooperating.

- Cafeteria managers who were particularly reluctant were referred to the project director for followup. These managers were contacted by phone and every attempt was made to facilitate the school's participation in the study. In some cases, cafeteria managers were permitted to send local food production records, computer printouts, or SMI audit reports that provided most of the information needed. Missing information was collected via followup telephone calls. In other cases, intensive technical assistance was provided. This inteasive assistance ran the gamut from daily telephone support to situations where Abt staff actually completed portions of the survey forms for respondents. In the latter case, respondents sent copies of their menus to Abt and Abt returned partially completed menu survey booklets along with a detailed list of questions to be answered and supporting information to be provided. Respondents were free to provide outstanding information in whatever format was most convenieat; Abt staff integrated information and miade call-backs as needed.

No respondent was considered a final refusal until the project director was unsuccessful in securing his or her participation or until it was clear that long-promised materials were never going to arrive.

After the data collection period was officially over, letters of thanks and personalized certificates of appreciation from USDA were sent to all cafeteria managers who completed the menu survey and to associated SFA directors.

Detailed information on how menu survey materials were used to assess the nutrient content of school meals is provided in Appendix E.

SFA Director Interview

Form Approved

School Nutrition Dietary Assessment Study - II

> Survey of Directors of School Food Authorities (SEAs)

Telephone Questionnaire

SFA Name
SFA ID Number
SFA Director's Name
SFA Phone Number
 I
\qquad

Phone Contacts (DD/MMMY)

Interviewer

Start Time \qquad End Time \qquad
:

[^28]Hello, this is \qquad from Abl Associates. We are very pleased that name of school food authority has agreed to participate in the second School Nutrition Dietary Assessment Study, which is sponsored by the US Department of Agriculture.

Our interview today will begin with a series of questions about the schools participating in this study: READ school names. I will also ask you about food service operations in your district overall.

Before we begin, do you have any questions about the study? ANswer Questions.
These first questions ask for some basic information about each school.
INTERVENER ASK QUESTIONS 1 THROUGH 9 WDIMDUALLY FOR EACH SCHOOL. READ ACROSS.

	MAME OF SChool	Mame of school	mame of school
4. Are there any students earolled at NAME OF SCHOOL who are not eligible to receive school lunches or brealfasts, such as kindergartners who are not in session at meal times? 4A. How many students are not eligible to receive school lunches at NAME of SCHOOL? 48. If school has bREAKFAST PROGRAM. . . How many students are not eligible to receive school breakfasts at NAME OF SCHOOL.	Yes \qquad No. \qquad 2 IF YES, ASK Q4A AND 4B. if no, 90 to next sсноод. \qquad \qquad students \qquad \qquad \qquad \| students Not applicable \qquad 1	Yes \qquad No \qquad IF YES, ASK O4A AND 48. IF NO, GO TO NEXT зсноо. \qquad students \qquad \qquad students Not applicable \qquad 1	Yes \qquad No \qquad IF VEs, AsK O4A AND 4B. IF NO, өо то 05. \square students \qquad \qquad students Not applicable \qquad 1
5. How many students are certified eligible for a free school lunch at NAME OF SCHOOL?		LلـL_ Students	
6. How many students are certified eligible for a reduced-price lunch at name of school?		لـ Students	- لـL Students

The next questions focus on the National School Lunch Program. I will ask about menu planning, food purchasing, and food preparation at each school.

	Mame Of SCHOOL	MAME OF SCHOOL	mame of school
7. Is the lunch menu for name of school planned at the district level, at an off-site kitchen serving the school, or at the school? CIRCLE ALL THAT APPLY.	District level 1 Off-site kitchen ... 2 This school 3 Other SPECIPY 6 \qquad \qquad \qquad	District level 1 Off-site kitchen .. 2 This school 3 Other SPECIFY 6 \qquad \qquad \qquad	District level 1 Off-site kitchen .. 2 This school 3 Other sPECIFY 6 \qquad \qquad \qquad

NTERMEWER
F MENU PLANWED AT DISTRUCT LEVEL, ASK Q8. OTHENWIE, SIGP TO Q9.
8. Do you or your staff have access to a computer for use in menu planning?

Yes ... 1
No
2
9. F MEMU PLANMED AT ANY OTHER LEVEL Do food service professionals have access to a computer for use in memu planning at the kitchen for NAME OF SCHOOL?

$\begin{array}{\|l} \text { Yes } 1 \\ \text { No } 2 \end{array}$	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots . . \\ \text { No } \\ \hline \end{array}$	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots \\ \text { No } 2 \end{array}$

	MAME OF SCHOOL	MAME OF SCHOOL	MAME OF SCHOOL
10. Which of the following menu planning options is currently used for NAME OF SCHOOL? READ UST. CIRCLE ONE ANSWER.	NuMenus 1 Assisted NuMenus . 2 New Food Based Menus (Enhanced Food Based Memus) 3 Traditional Meal Pattern 4 Other approach SPECIPY 6 \qquad \qquad \qquad if using numenus or assisted numenus, sKIP TO Q12. OTHERWISE, ASK Q11.	NuMenus 1 Assisted NuMenus . . 2 New Food Based Menus (Enhanced Food Based Menus) 3 Traditional Meal Pattern 4 Other approach SPECIFY 6 \qquad \qquad \qquad IF USING NUMENUS OR ASSISTED NUMENUS, sKip to Q12. OTMERWISE, ASK Q11.	NuMenus 1 Assisted NuMenus . 2 New Food Based Menus (Enhanced Food Based Menus) 3 Traditional Meal Pattern 4 Other approach SPECIFY 6 \qquad \qquad \qquad IF USING MUMENUS OR ASSISTED NUMENUS, sKip то 012. OTHENWISE, ASK 011.
11. Is a computer-based system used to analyze the nutritional content of the menus at NAME OF school?	sкip то 013.	sKIP то 013.	$\text { sкip то } 013 .$

13. WTERVIEWER seE Q9. is menu puanmine done at the district level?
Yes $\ldots \ldots \ldots . \ldots \ldots .$.

13A. In plamning menus, does your district use information provided by the State Child Nutrition
Program about the nutritional content of foods served?
Yes ... 1
No .. 2

WTERVIEWER IF RESPONDENT SAYS "NO STATE INFORMATION AVALLABLE," NOTE BELOW.
Information not available 3
138. Does your district use USDA Quantity Recipes for School Food Service in menu plaming?

Yes ... 1
No ... 2

13C. Does your district use USDA's New School Lunch and Brealfast Recipes from "A Tool Kit for Healthy School Meals" in memu planning?

Yes .. 1
No ... 2

13D. Does your school district use either of the following types of staff to plan menus?

> YES NO

A registered dietitian 12
A trained nutritionist 1.2 во то $\mathbf{Q 1 4 .}$

	MAME OF SCHOOL	MAME OF SCHOOL	MAME OF SCHOOL
13E. Is information provided by the State Child Nutrition Program about the nutritional content of foods served used to plan menus at NAME OF school? if respondent says "no STATE NFORMATION availaile," note the.	Yes 1 No \qquad Information not available \qquad	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots \\ \text { No } \ldots \ldots \ldots \end{array}$ Information not available \qquad	$\begin{aligned} & \text { Yes } \ldots \ldots \ldots \ldots . . \\ & \text { No } \ldots \ldots \ldots \ldots . . \end{aligned}$ Information not available \qquad 3
13F. Are USDA Quantity Recipes for School Food Service used to plan menus for NAME OF school?			
136. Are USDA's New School Lumch and Breakfast Recipes from "A Tool Kit for Healthy School Meals" used to plan menus for NAME OF school?		$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots \\ \text { No } \ldots \ldots . . \end{array}$	
13H. At name of school does...			
a registered dietitian plan menus?	$\begin{aligned} & \text { Yes } 1 \\ & \text { No } 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \ldots \ldots \ldots \ldots . .1 \\ & \text { No } \ldots \ldots \ldots \ldots \end{aligned}$	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \\ \text { No } 2 \end{array}$
a trained nutritionist plan menus?	$\begin{aligned} & \text { Yes } \ldots \ldots \ldots \ldots \\ & \text { No } 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \ldots \ldots \ldots \ldots . .1 \\ & \text { No } \ldots \ldots \ldots \ldots . . \end{aligned}$	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots \\ \text { No } 2 \end{array}$

	MUNE OF SCHOOL	Mave Of SCHOOL	MANE OF SCHOOL
16C. FI YES FOR REMEURSABLE ишсн... Have the menu items purchased from the commercial vendor(s) been modified or reformulated to meet requirements for reimbursement?	$\begin{aligned} & \text { Yes } 1 \\ & \text { No } 2 \end{aligned}$		

The next questions focus on school breakfast.

	mane of school	Mame Of SCHOOL	Mame Of SCHOOL
17. mienvamer see face suert. DOES SCHOOL PARTICPATE IN THE SCHOOL BRENGAST procreni?	 F F Mo, sicp Q18 ANo Q19 FOR THIS School.	Yes 1 No 2 IF NO, SKip Q18 ano Q19 FOR THS school.	F MO, SKIP Q18 AND Q19 FOR THES SCHOCL.
18. Is the breakfast menu for NAME OF SCHOOL plamned at the district level, at an offsite kitchen serving the school, or at the school? CRCLE ALL THAT APPLY.	District level 1 Off-site kitchen 2 This school 3 Other SPECIPY 6 \qquad \qquad	District level 1 Off-site litchen .. 2 This school 3 Other SPECIFY ... 6 \qquad \qquad	District level 1 Off-site kitchen . . 2 This school 3 Other specipy ... 6 \qquad \qquad
19. Is food purchasing for breakfast at NAME OF school done at the district level, at an off-site kitchen serving the school, at the school, or primarily at the district level with some items purchased locally? CINCLE ALL TMAT APPLY.	District level 1 Off-site kitchen 2 This school 3 District level with local purchasing 4 Other sPECIPY 6 \qquad \qquad \qquad	District level 1 Off-site kitchen .. 2 This school 3 District level with local purchasing .. 4 Other speciry ... 6 \qquad \qquad \qquad	District level 1 Off-site kitchen .. 2 This school 3 District level with local purchasing . . 4 Other speciry ... 6 \qquad \qquad \qquad

	MUE OF SCHOOL	MAME OF SCHOOL	MUE OF SCHOOL
20. Does name of school offer a la carte at breakfast?	 IF YES, со то 021A. IF NO, $о 0$ то 021B.	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots . . \\ \text { No } 2 \end{array}$ if Yes, со TO 021A. IF No, ©0 To 0218.	$\begin{array}{\|l} \text { Yes } \ldots \ldots \ldots \ldots . . \\ \text { No } \ldots \ldots \ldots \ldots . . \end{array}$ IF YES, ©O TO 021A. IF NO, ©о то 021 B .
21. Are foods from commercial vendors such as McDonald's, Pizza Hut, Domino's, Subway, Taco Bell, or local commercial vendors used at NaME OF school... A. for a la carte items at brealfast? B. for reimbursable breakfast?	Yes 1 No 2 Yes 1 No................. 2 Not applicable 3 IF YEs, AsK O21C. if no, ©O TO NEXT school.	Yes 1 No 2 Yes 1 No.............. 2 Not applicable ... 3 IF YES, ASK 021C. IF NO, ©O TO NEXT school.	Yes $\ldots \ldots \ldots \ldots .$. No 2 Yes IF VES, ASK O21C. IF wo, ©о то 022.
21C. IF YES FOR REMBURSABLE BRENGFAST . . . Have the menu items purchased from the commercial vendor(s) been modified or reformulated to meet requirements for reimbursement?			

Now, I'd like to ask you some general food service questions about your district.
22. Does your school district currently use a food service management company to perform any food service functions?

$$
\text { Yes } \ldots \ldots \ldots \ldots \ldots \ldots . .
$$

22A. I'm going to read a list of food service functions. Please tell me if each function is performed by the school district or by the food service management company, or if the responsibility for the function is shared.

	distaict	manacement COMPANY	SHARED	мот amplicalle
Preparing reimbursement claims	1	2	3	4
Accounting and financial recordkeeping ..	1	2	3	4
Planning menus	1	2	3	4
Preparing USDA-reimbursable breakfasts	1	2	3	4
Serving USDA-reimbursable breakfasts . .	1	2	3	4
Preparing USDA-reimbursable lumches ..	1	2	3	4
Serving USDA-reimbursable lunches	1	2	3	4
Providing a la carte service	1	2	3	4
Providing equipment for food preparation	1	2	3	4
Cafeteria clean-up	1	2	3	4
Purchasing food	1	2	3	4
Making arrangements for using donated commodities	1	2	3	4
Selling lunch tickets and collecting lunch money	1	2	3	4

23. Do you purchase all, some, or no food through a cooperative for schools in your district?

All	1	Ask 023A.
Some	2	Ask 023A.
None	3	во то 024.

23A. Does the use of a purchasing cooperative limit, expand, or have no effect on your ability to purchase the food items you want?

Limit
1

Expand 2
No effect . .. 3
24. Which of the following methods are used to set unit prices for USDA-reimbursable meals in your school district?
YES No
An actual pricing method which considers all costs of buying, producing, and serving the food 1
Food-cost-percentage markup where the same markup percentage is added to every item 1
Unit prices are reset only to offset financial loss 1
Is any other method used to set unit prices for reimbursable meals? sPECIFY 1 2
Don't know 8 8
25. INTERVEWER sEE Q15 (WND O20, if necessany). does distmict offer a la cante at any of the schools?

Yes	1	028.
No	2	ask 025A.

25A. Do any schools in your district offer a la carte?
Yes $\ldots \ldots \ldots \ldots \ldots .$.
26. Which of the following methods are used to set unit prices for a la carte items in your school district?

	ves	wo
An actual pricing method which considers all costs of buying, producing, and serving the food	1	2
Food-cost-percentage markup where the same marluip percentage is added to every item	1	2
Group pricing-for example, all vegetables at same price per portion; all similar-size cookies at same price	1	2
Is any other method used to set unit prices for a la carte items? SPECIFY	1	2
Don't know .	8	8

26A. IF Ves to pooo-cost-mencentace mamap . . . You just told me your district uses the food-costpercentage method for pricing a la carte items. What percentage mariup from wholesale cost do you use to calculate the sales price for the following types of foods?

VEAFY TMAT ANSWER is Expresped as a PENCENTAGE.
Mill
Items on reimbursable menu \qquad \% Not applicable. \qquad .1

Other a la carte items \qquad $\%$

Thank you very much for your time and for your help. I want to remind you that the target week(s) for this study are READ TARGET DATES. We will send the menu survey materials for you to distribute to your school cafeteria managers. Do you have any other questions about the study and these materials? ANSWER OUESTIONS.

Thank you again for your help.

Everyday Reimbursable Foods Form

$$
233
$$

BLANK

NoTe: You do not meed to list these foods again on the Daily Menu Forme.

Daily Menu Form

$$
236
$$

11
 BLANK
 PAGE

\qquad
Daily Menu Form

Recipe Form

$$
237
$$

\qquad of
\qquad
NAME O RECIPE/FOOD
Please use the same name that you used on the Everyday Reimbursable Foods Form or Daily Menu Form.
DAY All Days Mon TUE WED THU FRI Circle all that apply.
meal Breakfast lunch Circle ome.
Check (Ω) the box beside the option you selected for the recipe or food listed above.
\square Option 1 - Recipe Form Completed (SIDE 1 and SIDE 2)
\square Option 2 - Copy of Recipe Attached
Staple or clip recipe to this page. Turn to SIDE 2 to complete Preparation Information.

Number of Servings Prepared \qquad Portion Sise
Examples: $1 / 2$ cup, 4 fluid os, 116 seoop

Ingredient with Complete Description - Specify full mame. - For foods other than milk, fresh meats, and fresh ryoduce, inchude manujacturer and brand names and product code (ff available). - Refer to FOOD DEscription Guide for necessary descriptions. - If ingredient is prepared from a separate recipe, complete separate RECIE FORM.	B Ingredient Type 1- Commodily $2=$ Pro-prepared 3 = Recipe 4= Othor Circle owe number for aach ingredient.				C Amount in Recipe Inchude Units
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	
	1	2	3	4	

RECIPE FORM

(SIDE 2)

Please check (Ω) the boxes below to describe the procedures used in preparing this recipe.

1. If recipe was cooked, what cooking method did you use?

\square Bake/roast	\square Broil/grill	\square Pan fry/saute	\square Boil
\square Oven heat	\square Braise	\square Deep fry	\square Steam
\square Flour and fry	\square Coat in batter and fry		\square Other sPECIFY
\square Does not apply to recipe			

2. If recipe contains meat, poultry, fish, or shellish, was amount measured raw or cooked?
-RawCooked
\square Does not apply to recipe
3. If recipe contains meat or poultry did you

Check all that apply.
Trim the visible fat?
\square Yes
YesNo
\square Does not apply to recipeYesNoDoes not apply to recipe

Drain fat after cooking?
Rinse with hot water, drain fat and rinse again?
Remove skin before cooking?Yes

NoDoes not apply to recipe
4. If recipe contains noodles/pasta, rice, or vegetables, did you add salt to the cooking water?

Noodles/pasta or rice
Yes
\square No
\square Does not apply to recipe
Vegetables
YesNoDoes not apply to recipe
5. If recipe contains canned vegetables or canned fruit, did you drain off all of the liquid?
\square YesNoDoes not apply to recipe

Nutrition Information Form

NUTRITION Information Form

SCHOOL NAME \qquad

NAME OF FOOD
Please use the same name that you used on the Daily Menu Form or any other forms where this food is listed.
DAY Alldays MON TUE WED THU IRI Circle all that apply.
Meal
BREAKFAST LUNCH Circle one.

Check (Ω) the box beside the option you selected for the food listed above.
\square OPTION 1 - Nutrition information not available
Please provide marugacturer and product information below.

Complete name of food \qquad
Include brand name and product code, if available
Manufacturer's name \qquad
Manufacturer's address \qquad
Manufacturer's telephone number \qquad
Weight or measure (volume) of one serving \qquad
Examples: 5 oz. pizza, 11.6 fluid or. Gatorade
\square OPTION 2 - Information sheet from manufacturer attached
Staple copy of mutrition information sheet provided by mamufacturer or distributor.
\square OPTION 3- Information copied from label
Turn over form and fill in the requested information.

OPTION 3 Continued

1. Please copy the following information from the package or label:

Complete name of food \qquad
Include brand name and product code, if available
Manuficturer's name \qquad

Manufacturer's address \qquad
Manufacturer's telephone number \qquad
Weight or measure (volume) of one serving
Examples: 5 oz. Pizza, 11.6 fard oz. Gatorade
2. If the label has a Nutrition Facts or Nutrition Information section, please record the following information per serving:

3. If the label does not have nutrition information, please list the first five ingredients.

Daily Meal Counts Form

dally Meal Counts Form

Please record the total manher of USDA relmbursable meals served in your school each day of the target week. Provide soparate mumbes for huches and for breakinsts, if breakfints are served. If your school offers full priced meals at more than one prico-for erample, higher prices for larger portions or lower prices for weekly meal tichet discounts, wite the number of meals served at each price. Do not include meals for which you do not claim reimbursement-for example, second hunches sold to students on an a la carte basis. However, please record your total (breekfast and hunch) a la carte sales for the target week.

Number of Reimbursable Lunches Served

			Full Price			
		Reduced Price	Standard Price Day of Week	Free	Price 2 S	Price 3 S

Number of Reimbursable Brealfasts Served

Day of Week	Free	Reduced Price	Full Price			Total
			Standard Price S \qquad	$\begin{aligned} & \text { Price } 2 \\ & \mathbf{S} \end{aligned}$	Price 3 S	
Monday						
Tuespay						
Wednespay						
Thursday						
Priday						

A la Carte Foods Checklist

$$
245
$$

SCHOOL NUTRITION DIETARY ASSESSMENT STUDY - II

A la Carte Foods Checklist

Attach School ID Label

Instructions

1. Complete this form for the one day of the week specified on above label.
2. Place a check in the box next to each food your cafeteria sold on an a la carte basis - at brealdist and/or at lunch - on the specified day. If you sometimes sell a food, but did not sell it on the specified day, do not chock the box.
3. If your cafeteria offered a la carte food or beverages that are not included in the list, please write in the names of these foods and beverages on the last page of the checklist.
4. If you have any questions, call Abt's toll-free number: 1-800-649-9560.

Chock ($($) box if food wes ctilered a la carte on specified day

1. Carbonated soft drinks
(Cola-sweetened, cole-diet, non-cole-sweetened, dict)
2. Coffee
\square3. Hot chocolste\square
3. Juice (100% juice)
4. Juice (50% juice)
5. Juice drinks (10% juice)(Cranberry drink, fruit blends, Hi-C,lemonade, punch)
6. Milk shake or malt
7. Mineral water\square
8. Tea
\squareB. Baked Geods-Desserts
9. Colce-type\square
(Cupeakes, brownies, Twinkies)
10. Cookies\square
11. Pastries(Pies, tumovers)
12. Other baked goods-desserts

C．Bread or Grain Prodncts
1．Regaler breed
（Breed，roll，bagel）
2．Other bread
（Biscuits，croisements，hot preterols）
3．Muffins
4．Tortilla
5．Other grinin products \square
（Crackers，gramola ber，pretecis）

D．Candy
1．With chooolate
2．Without chooolete

E．Frozen Desperts
1．Froeen noo－deairy
（Frosen fruit ber，Jello Pop，Popsicle）
2．Ioe cream
（Bess，Fudgesicles，Scoop，sunderes）
3．Low－fin froesa deverts
（Froen yogurt，ice milk，sherbet）

F．Frait
1．Cemned，cooked fruit
2．Freeh fruit
3．Fruit salad

Check（ $($ ）box if frod wes offered a la carte on specified dey

ロ
\square
\square
\square

G. Meat and Meat Alternate/Eatrees

Chock ($($) box if food wes offiered a la cirte on specified day

Beef

1. Hemburger or cheeseburger
2. Chili or burrito
3. Oher beef

Poultry

4. Chickea patty (breaded)
5. Chicken (other)
6. Turkey

Oiker Meat

7. Hot dog (Cora dog, frames and beans) \square
8. Cold cuts (Bologna, salemi, and similer cuts)
9. Sausage or pork

Meas Allemate

10. Choese sandwich
11. Other checse
12. Beans or peas (Chick pess, garbanzo beans, lidney beans, refiried beans)
13. Egeg (Hard cooked, egg salad, scrambled, fried)
14. Fish
15. Nuts and seeds (Peanuts, peanat butter, sunflower seeds, other nuts)

Mixed Dither

16. Chef soled
17. Lagena
18. Macreoxi and chess
19. Pima (No meat)

Check(() box if food was offered alicerition specified dy
\square
\square
20. Pizza (With meal)
21. Spaghetti
22. Soup with meat or beans
(Benin, chicken, clem chowder, minestrone)
23. Mexican food (Other)
24. Chinese food \square
25. Other Seseciry

H. Vegetables

1. Fried potatoes
(Including pre-fiied, oven belied, french fries, Tater Tots)
2. Salad
(Tossed salad, potato salad, three bean salad, raw vegetables)
3. Vegetable (Other cooled)
4. Vegetable (soup)
L. Sasclas
5. Clip
(Com, potato, puffed choose, tortilla)
6. Nuts and seeds sumfoner seeds, trial mix)
7. Popoom
8. Other macks
\square
\square

(Almonds, peanuts, pistachios,

\square
J. Yogurt

1. Yogurt

On the neat page, plumes list my food or beverage that is not listed on pages 1 through 5 of this checklist and then your cafistaria offered a la carte co specified day.
K. Other A La Carte Items sreciry Abt

252

Meal Service Questionnaire

$$
253
$$

SCHOOL NUTRITION DIETARY ASSESSMENT STUDY - II

Meal Service Questionnaire

ATTACH SCHOOL ID LABEL

If you have questions or need assistance, please call Alt's toll-free number: 1-800-649-9560

Public reporting burden of this collection of information is estimated to average 8.5 minutes per response, including the the fer reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. An agency may not conduct or sponsor, and a carson is not required to respond to a collection of information unless it displays a currently valid OMB control number. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to: Department Clearance Officer, OIRM, AG Box 7630, Washington, DC 20250.

Instructions for Completing tie Meal Service Questionnaire

This short questionnaire asks for information on the lunch and breakfast programs at your school. Please follow these instructions when filling in your answers. Please write clearly.

Recordiling Answers

There are a few different ways to indicate your answer to a question.

1. Circle the number next to the appropriate answer category.

Example

A4. Not including milk, do you usually sell food items from the USDA-reimbursable lunch on an a la carte or supplemental sale basis? That is, do you sell individual food items priced separately?

Yes
1
No
2
2. Write your answer in the backs or on the lines provided.

Example

A1. What is the price of a USDA-reimbursable lunch for students who pay the reduced price?

3. Instructions to species. Circle the number next to the SPECIFY category, write your answer on the lines provided.

Example

A3. Which of the following types of meal service are offered at lunch? CHILE YES OR NO FOR EACH.

A. The School Lunch Program

A1. What is the price of a USDA-reimbursable hunch for students who pay the reduced price?

S.ப.ப

A2. What is the price of a USDA-reimbursable lunch for students who pay the fiull price? Record more than one answer if your cafeteria offers lunch at different prices (for example, a higher price for larger portions or a discount for a weekly meal ticket).

\$	Standerd Full Price	
\$ـلـL	Other Full Price	SPECIFY
\$1.لـLالـL	Other Full Price	SPECIFY

A3. Which of the following types of meal service are offised at iunch? CIACLE YES OR WO POR EACH.

			Fres: How many days per week?
	ves	No	days pen week
A hot meal which changes daily	1	2	\square
A cold meal, such as a sandwich or salad plate	1	2	\square
A hot sandwich such as a hamburger, hot dog, or pizza	1	2	\square
A salad bar	1	2	\square
A la carte or supplemental sale items that are not part of the USDA meal and are priced separately	1	2	\square
Other types of meal service specify	1	2	\square

A4. Not including will, do :Nu usually sell food items from the USDA-reimbursable hunch on an a la carte or supplemental solo basis? That is, do you sell individual food items priced separately?

$$
\text { Yes } 2
$$

A5. Which of the following options are available to students during school hours? CINCLE YES OR WO PON EACH.

	ves
Vending machines in or near the cafeteria	1
Vending machines in a different part of the school . .	1
A school store, snack bar, or canteen	1
Are there other ways that students may obtain food at school every day? F YES, SPECIFY	1

1
Vending machines in or near the cafeteria 1
Vending machines in a diffierent part of the school .. 1
2
A school store, snack bar, or canteen 2
Are there other ways that students may obtain food at achool every day?

2 F VES, SPECIFY
\qquad

A6. Are students permitted to leave school for luzich?

$$
\text { Yes } 2
$$

A7. Does your school routinely publicize or post information on the mutrient content of USDA-reimbursable meals?

Yes

1
\qquad
No 2

A8. Have you (ar your school district) made any changes in the hunches offered to students in order to meet the recent requirement that meals comply with the Dietary Guidelines for Americans?
(PACE 4)

A9. In comperison to how students ate before school lunches were required to comply with the Dietery Guidelines for Americens, have you noticed any changes in the amount of food students throw away (do not eat) at huch time? (please cunck ove Box For encw foce)

	Stedents whete more	Students wastolles	$\begin{gathered} \mathrm{No} \\ \text { change } \end{gathered}$	Doa't
Milk	01	$\square 2$	03	D4
Main dishlentree	01	$\square 2$	[3	D4
Bread or bread altemste	01	$\square 2$	03	04
Salad/raw vegetables	[1	$\square 2$	03	D4
Cooked vegetables (other then French fries)	01	$\square 2$	03	D4
Fruit	-1	$\square 2$	03	04
Desserts	01	-2	-3	04

A10. In your opinion, how do students feel about the hunches offered since schools were required to comply with the Dietery Guidelines for Americans compared to the hunches offered before this requirement? (MEAES CMECK ONE EOK.)

Students like these lunches much better then the old lunches II
Students like these lunches somewhat better than the old lunches O_{2}
Students like these lunches about the same as the old hunches 03
Students like these hunches somewhat less then the old lunches D_{4}
Students like these lunches much less than the old hunches \quad. 5
Don't lnow . B 8

B. TEE SCHOOL BREAKFAST PROGRAM

B1. Does your school participate in USDA's School Breakfast Program?

B2. What is the price of a USDA-reimbursable breakfast for students who pay the reduced price? \$

B3. What is the price of a USDA-reimbursable breakfast for students who pay the full price? Record more than one answer if your cafeteria offers brealfint at different prices (for example, a higher price for lagger portions or a discount for a weekly meal ticket).

B4. Which of the following types of meal service are offered at brealinat? CIRCLE YES OR MO POM EACH.

B6. Not including milk, do you usually sell food items from the USDA-tuimbursable breakfast on an a la carte or supplemental sale basis?

$$
\begin{aligned}
& \text { Yes } \\
& 1
\end{aligned}
$$

83. Hoveycu (or your echoel ditrixt) made ary changes in the brealfists offired to students in order to meet the receat requirement that meals comply with the Dietry Guidelines for Americens?

84. In comparison to how students ate before school brealfists were required to comply with the Dietrey Guidetines for Americans, have you noticed any changes in the amount of food studeats throw away (do not eal) at breakfast time? (Muses creck one EOx for encu poons

	Stadeats	Sendertes	$\begin{gathered} \text { No } \\ \text { chenge } \end{gathered}$	Doa't
Milk	01	$\square 2$	$\square 3$	04
Hot brealdiast entrees	Q1	02	$\square 3$	04
Cereal, toest, or breed alternates	[1]	$\square 2$	03	[4
Fruit	-1	02	O3	D4
Juice	미	02	[3	-4

B8. In your opinion, how do students fiel about the breakfists offered since schools were required to comply with the Dictary Guidelines for Americans compared to the breakfists offired before this requirement? (MEAse Criecir ONE EOKA)

Students like these brealfints mameh better then the old brealfints 민
Students like these brealfirts somemitat better then the old breekfirts. $\square 2$
Students like these breakfints about the same as the old breekfintes. - 3
Students like these brealinsts somemtat lase than the old brealdiuts. 04
Students like these brealfiats memel loses then the old brealfiasts. D5
Don't know 08
29. Other then the School Breakfant Program, is there a morning sanck program or some other program providing food to studeats in the morning after they get to school? Please do not incluce vending mechines.
Yes 1
No 2

Thank you very much for your assistance!

Appendix D
 Sample Design and Calculation of Sample Weights

This appendix describes how SFAs and schools were sampled for the SNDA-II study and how SFAs were recruited. Response rates, at the point of recruitment and following data collection, are also reported. The final section of the appendix x describes the methodology that was used in calculating sample weights.

Sample Design

The primary objective of the sample design for the SNDA-II study was to provide national probability samples of public elementary schools, middle schools, and high schools participating in the NSLP in the 48 contiguous states plus the District of Columbia. Although data were collected exclusively by mail and telephone, Hawaii and Alaska were excluded from the sampling frame to maintain comparability with the SNDA-I study.

The sampling frame was obtained from Quality Education Data, Inc. (QED). The frame differed from the one used in SNDA-I because it included only public schools. This variation was specified by FNS because the number of non-public schools participating in the NSLP is 80 small. The frame was assembled, and the sample was selected, in the spring of 1997. However, because FNS made a decision to postpone the study for one year to allow schools more time to implement the Dietary Guidelines, SEAs and schools were not recruited until the spring of 1998.

Sample selection occurred in two stages. SPAs, considered to be analogous to school districts, were selected first and then schools were selected within sampled SPAs. Before selecting SFAs, supervisory unions and subdistricts were combined so that the combined group included elementary schools, middle schools, and high schools. Next, very small districts (those with fewer then 10 children per grace) were removed from the frame. Finally, each school was designated as an elementary school, middle school, or high school using the classification rules used in SNDA-L. ${ }^{1}$

The resulting frame was sorted by FNS region, metropolitan status, and size (total enrollment) and a stratified sample of 597 SFAs was selected using PPS sampling. Three schools were then selected for each district "hit" (in PPS sampling, some districts may be selected more than once). To the extent possible, one school of each type was randounly selected in each sampled SFA. If the SFA had fewer than three schools, all schools were selected. This procedure yielded a sample of 602 elementary schools, 526 middle schools, and 576 high schools.

[^29]Because sampling goals were somewhat lower than these numbers (approximately 525 schools of each type), a second sampling procedure was used to decrease the number of selected schools. A random number was assigned to each school and the list of sampled schools was sorted by SFA and by school type. Next, the first 525 elementary schools and the first 525 high schools were selected and all 526 of the middle schools were selected. This resulted in a sample of 1,576 schools in 597 SEAs.

Sample Recruitment

Sample recruitment began with the process of notifying FNS regional offices and State Child Nutrition (CN) Agencies. FNS regional office liaisons were notified about the states and SPAs in their region that had been selected for the study. Likewise, State CN Agencies were notified about the SFAs that had been selected in their State. State directors were asked to provide contact information for SPAs in their State and to encourage all sampled SEAs to participate.

After contact information for sampled SPAs had been assembled, introductory letters and study overviews were sent to directors of all sampled SFAs. Senior project staff made followup phone calls to recruit districts, and the sampled schools within those districts, into the study. Direct contact was not attempted with the sampled schools. The SFA director agreed or declined for each of the schools sampled in his/her SFA. SFAs were permitted to agree to parties participation in the study (ie., to agree to have some, but not all, of the sampled schools participate in the study).

Project staff answered SFA directors' questions about the study and responded to any concerns raised. Reluctant SFA directors were referred to the project director for additional followup. The project director recontacted all of these SFA directors and attempted to secure cooperation.

Results of recruitment efforts are summarized in Exhibit D.1. A total of 478 SEAs (1,232 schools) agreed to participate in the study. Most (450) of these SFAs agreed to have all sampled schools participate. The remaining 28 SFAs declined participation for one or more of the sampled schools. Overall levels of cooperation (81.3% for SPAs and 79.5% for schools) and the sample sizes available for data collection were consistent with expectations outlined in the study's sampling plan and OMB clearance package.

Completion Rates for Data Collection Components

All of the SPAs and schools that agreed to participate in the study in the spring of 1998 were recontacted in late summer to initiate participation and to prepare for the fall data collection. As described in Appendix C, numerous methods were used to encourage fill cooperation in the study at both the SFA and school level. Nonetheless, as evidenced by the protracted data collection period, many schools found it difficult to complete the menu survey. In some cases, concerns about the menu survey component of the study affected completion of the SFA director interview.

SFA- and School-Level Cooperation at the Time of Recruitment

Note: Ineligible schools (end in some oses entire SEAs) included sampled schools that turned out to be residential freisibes or some other son-publie schools, schools that did not offer the NSLP, and schools the were no longer in exinemee at the time of reeritimest the to copings, mergers, and reorgmications.

Exhibits D. 2 - D. 5 show completion rates for the various components of the data collection. Completion rates for the non-menu survey components of the mail survey of cafeteria managers were slightly lower than for the meas survey because some of the schools that were able to complete the mem survey by providing local data forms or through receipt of intense technical assistance never completed the other survey components.

For the menu survey, the vast majority of respondents (89\%) provided hunch data for five days. Ten percent provided four days of data, most often because there was a holiday or other school closing during the target week. Leas than ce percent provided data for three days.

Exhibit D. 2

Completion Rate for the SFA Director Interview Among Cooperating SPAs

Notes: Ineligible schools include two schools in the ineligible (reeidentin) SFA and six schools that were cither closed, manged, or not offering the NSLP.

Lathe D4

Completion Rate for the Memo Survey Among Cooperating Schools

	Elementary Schools	Mid ale Schools	High Schools	All Schools
Status	365	360	350	1,075
Completed	68	26	55	149
Refused	2	4	2	8
Ineligible	435	390	407	1,232
Total	$\mathbf{8 4 . 3 \%}$	$\mathbf{9 3 . 3 \%}$	$\mathbf{8 6 . 4 \%}$	$\mathbf{8 7 . 8 \%}$

Notes: Ineligible schools include two schools in the incligilie (residential) SFA and six schools that were cither coed, merged, or not offering the NSLP.

Exhibit D. 5

Completion Rate for the Meal Service Questionnaire and A la Carte Checklist Among Cooperating Schools

Status	Elementary Schools	Middle Schools	High Schools	AR Schools
Completed	352	345	339	1,036
Refused	81	41	66	188
Ineligible	2	4	2	8
Total	435	390	407	1,232
Percent Completed (excludes ineligibles)	81.3%	89.4%	83.7%	$\mathbf{3 4 . 6 \%}$

Note: Ineligible schools include two schools in the incligilde (recidentin) SFA and six schools that were cither closed, merged, or not offering the NSLP.

Development of Sample Weights

Sample weights were developed to adjust survey data for differences between the analysis samples (SPAs and schools that completed the various data collection components) and the reference population (sample frame of problic schools). Differences between the analysis sample and the reference population are attributable to effiocts of the sample design as well as to differential rates of response among sampled SPAs and schools. Sample weights were used to adjust survey data so they could be used to meet the objective of the study - to produce nationally representative estimates of the characteristics of public schools participating in the NSLP.

Four different weights were developed for use with the four principal sources of data:

- SFA-level data obtained from the SFA director interviews,
- school-level data obtained from the SFA director interview;
- meas survey data; and
- Other school-level data (the non-memu survey instruments - Meal Service Questionnaire, A la Carte Foods Checklist, and Drily Meal Counts Form).

spA Weight

An SFA weight was developed for use in the analysis of the SFA-level responses from the SFA director interview. The first step in calculating this weight was to obtain a base sampling weight for each unique sampled school district. The base sampling weight equals the sum of the district measure of size for all eligible districts in the population divided by 617 times the measure of size of the i-th district selection. 617 is the number of district selections in the initial sample (a total of 597 districts were selected, but 20 districts were selected more then once). If a district was selected with certainty, it was assigned a base sampling weight of one.

Each sampled district was assigned a final status code of ineligible, refusal, or completed. The next step in the process was to use the initial sampling frame of 12,590 public school districts to produce frequencies on metropolitan status, region, and district size, the variables that were used to stratify the sample. These frequencies formed the control totals used in creating sampling weights. Both completed and ineligible SEAs were included in the sampling weights to reflect the fact that the sampling frame included some ineligible districts. A convergence criterion of 1.0 was used in creating a final weight (SFA Weight).

School Level Weights

Three different school-level weights were developed - one for each of the sources of school-level data:

- school-level data obtained from the SFA Director Interview: SFA_Sch Weight
- menu survey data: Nut Weight
- non-menu survey instruments included in the mail survey of cafeteria managers (Daily Meal Counts Form, A la Carte Foods Checklist, Meal Service Questionnaire): Menu Weight.

The same procedure was used in calculating each of these weights. The first step in the process was to compute a base sampling weight. This is equivalent to the reciprocals of the multistage selection probabilities of units in the selected sample. The calculation divides the total number of schools in a district within a stratum (elementary, middle, and high) by the number of schools sampled from that same stratum in that district.

Control totals were obtained from the sampling frame of 76,339 public schools included in the 12,590 public school districts. Frequencies were generated for size, metropolitan area, school type, and region. These frequencies were used as control totals in creating sampling weights. Again, both completed and ineligible schools were included to reflect the fact that the sampling frame included ineligible schools. A convergence criterion of 1.0 was used in creating a separate weight for each of the three school-level analysis files. Because the number of participating schools varies somewhat across the three school-level analysis files, the sum of the final school-level weights varies slightly. However, the sum of the weights of the participating and ineligible schools in each of the three files adds to 76,339 .

School Reclassification

As described in the section on sample design, schools in the sampling frame, and therefore all sampled schools, were designated as elementary schools, middle schools, or high schools, using the classification rules used in SNDA-I. During both the recruiting and data collection phases, situations were encountered in which the actual grade configuration was inconsistent with the school type that had been assigned during sampling. This may have been due to errors in the sampling frame or to changes in school configuration between the time the sample was drawn and recruitment and data collection were completed.

For purposes of calculating response rates and sample weights, all schools needed to retain the status that was assigned during the sampling process. For all analyses, however, schools were reassigned to the correct school type. A total of 66 schools were reclassified. The most common reclassification involved middle schools and high schools that were reclassified to elementary schools. Thus, final analysis samples were slightly lower for middle schools and high schools and higher for elementary schools.

Appendix E Determining Nutrient Content of School Meals

This appendix describes methods used to determine the average nutrient content of NSLP and SBP meals. Initial sections describe the procedures used to review and process the menu surveys that were completed by cafeteria managers. Later sections detail how these data were analyzed to produce both weighted and unweighted estimates of the nutrient content of average school meals. Information is also provided on the food grouping scheme used in analyzing the types of food offered in school meals.

Review and Processing of Completed Menu Surveys

Completed menu surveys were logged into an ACCESS database as they were received at Abt Associates' data management center. The ACCESS database was used to track each step in the data processing and entry procedure. All data processing and entry was done by nutrition coders who completed a series of targeted training sessions that focused on specific aspects of the data processing protocol. Most coders were completing undergraduate studies in nutrition. All training sessions were conducted by senior project nutritionists and/or the project director.

The first step in the process was a detailed editing procedure. Each completed menu survey booklet was systematically examined to identify instances where needed information was missing, ambiguous or not internally consistent (e.g., the reported number of entree servings exceeded the reported number of reimbursable meals). Coders completed comprehensive call-back forms that listed, by day and by meal, all of the information that was missing or that needed clarification. In order to ensure that call-backs were made as soon as possible after the menu survey was received, lead nutrition coders managed the flow of memu surveys into the editing process on the basis of receipt date.

After call-back forms were complete, coders called cafeteria managers and, in some cases, other individuals in the SFA (e.g., SFA directors, managers of central kitchens, or other central office staff) to obtain needed information. Calls were also made to vendors or food manufacturers when the information available to or provided by respondents was insufficient to allow for appropriate coding of a particular item.

Entering Data into the Computerized Nutrient Analysis System

The second stage of the data processing protocol was entry of menu survey information into the nutrient analysis system. After all issues related to missing or unclear data were resolved, a case was considered complete and ready for data entry. The nutrient analysis system used was NUTRIKIDS (LunchByte Systems, Inc. - version 8.0), a USDA-approved NSMP software system that was selected by FNS. The software included release 3 of the Child Nutrition Database (CN-3 Database), the version that was the most up-to-date at the time data were being processed, as well as an expanded database of brand name foods developed by LunchByte Systems.

Foods not available in the database were entered by LunchByte Systems staff or lead nutrition coders using information provided on package labels or in nutrition information summaries provided by vendors or manufacturers. Information obtained from these sources was reviewed for reasonableness prior to entry into the database. When information for a particular product was not available from the school, SFA, vendor or manufacturer, nutrition coders selected the most comparable item in the database, based on the product description and, if available, a list of ingredients. When data were missing for a particular nutrient, a value was imputed based on the most comparable product or, when several options were available, a mean value.

The NUTRIKIDS software was modified by LunchByte Systems staff to meet the special needs of this study. Numerous modifications were made to accommodate the number of schools involved in the study and the need to create school-specific versions of the same recipe (e.g., the recipe used for mashed potatoes varied from one school to the next). In addition, the software was modified to incorporate both weighted and unweighted nutrient analyses. Finally, to permit more detailed food group analysis, an expanded list of food groups was incorporated. The nutrient analysis and food group functions are described later in this appendix.

Entry Procedures

Nutrition coders entered the information required for nutrient analysis using prescribed entry procedures and the screens included in the NUTRIKIDS software. Items described in the menu survey were matched with the most appropriate food item in the database or with items specifically added to the database, as described above. Coders entered complete recipes for traditional recipe items (e.g., cookies or soup inade from scratch), as well as for items prepared by combining two or more individual ingredients (e.g., peanut butter sandwiches). Information on portion sizes and the number of portions served was also entered for every menu item.

Self-Serve Foods and Missing Portion Sizes

When portion size information was missing or foods were offered self-serve (and the respondent was unable or unwilling to provide information on the size of the standard serving utensil or some other estimate of portion size), coders entered defined default portions. Default portions were based on those used in the SNDA-I study but were modified slightly to reflect current program emphases on larger portions of fruits and vegetables and more servings of breads and grains. Default portions for selected breads and grains were also adjusted for breakfast menus.

Default portions for lunch and breakfast menus are shown in Exhibits E. 1 and E.2, respectively. Default portions were also defined for four different types of accompaniments: condiments, spreads, toppings, and salad dressings. These defaults, shown in Exhibit E.3, were based on those used in SNDA-I.

Salad Bars and Other Self-Serve Theme Bars

Respondents provided information on all foods offered on salad bars and other self-serve bars. For bars that were served on multiple days, respondents were asked to provide information only for the first day the bar was offered. The salad (or other) bar recipe created using this information was incorporated into the daily menu for each day the bar was offered.

Exhibit E. 1
Default Portion Sizes for Food Items Not Included in Salad Bars or Other Self-Serve Food Bars

LUNCH MENUS

Exhibit E. 2

Default Portion Sizes for Food Items Not Included in Salad Bars or Other Self-Serve Food Bars

BREAKFAST MENUS

Exhibit E. 3
Default Portion Sizes for Accompaniments

Condiments/Spreads	Portion Size	Toppings	Portion Size
Barbecue sauce	1 Tbsp	Bacon bits	3/4 Tbsp
Butter	1 pat (1 each)	Cheese sauce*	2 Tbsp
Cranberry sauce	1 Tbsp	Cheese, shredded*	3/4 Tbsp
Cream cheese	1 Tbsp	Chili*	1/8 cup
Honey	1 Tbsp	Croutons	3/4 Tbsp
Hot sauce	1 tsp	Dates	3/4 Tbsp
Jam, jelly	1 Tbsp	Eggs, chopped*	1 Tbsp
Ketchup/catsup	1 Tbsp	Gravy	2 Tbsp (1 fl oz)
Margarine	1 pat (1 tsp)	Lettuce and/or tomato	1/4 cup
Mayonnaise	1 Tbsp	Nuts, seeds*	3/4 Tbsp
Mustard	2 tsp	Onions, chopped	2 tsp
Olives, sliced	3/4 Tbsp	Peppers (hot), pimentos	3/4 Tbsp
Pancake syrup	3 Tbsp	Raisins	1 Tbsp
Peanut butter*	1 Tbsp	Whipped cream/topping	2 Tbsp
Pickles	3 slices or		
Relish	1 spear		
Salsa/taco sauce	2 tsp	Salad Dressings	
Sour cream	2 Tbsp	All types	3/4 Tbsp
Sweet and sour sauce	2 Tbsp	Dips for raw vegetables	3/4 Tbsp
Tartar sauce	1 Tbsp		

[^30]Although portions were available for some items (e.g., the average size of a potato used on a potato bar or the portion of pasta served on a pasta bar where students were allowed only to self-serve sauces and other toppings), portions were not specified for most self-serve bars. The procedures used to enter information for salad bars and other self-serve theme bars - in order to define an average serving from the bar - were based on the approach used in the SNDA-I study. This approach assumes that students are offered everything on the bar and assigns default portions to individual items on the bar based on the minimum portions required in food-based meal patterns or, for non-pattern items such as condiments, defined default portions (as shown in Exhibit E.3).

SNDA-I defaults for self-serve theme bars were modified to reflect current program emphases on larger portions of fruits and vegetables and smaller portions of meat and meat alternates for secondary school students and more servings of grains and breads for all students. Coding rules are summarized in Exhibit E.4. These general rules were also used for coding all other self-serve theme bars, with the exception of potato bars. Self-serve bars did not necessarily include all the components defined in the coding rules. Coding rules were applied to whichever foods were present on the bar.

Potato bars were handled essentially the same way they were handled in SNDA-I. Average toppings were added to a potato depending on what was offered. All meat/meat alternate toppings were averaged together to equal one serving of meat. All non-meat toppings were averaged together and one average serving of non-meat toppings was added to the potato. This composite was used to determine the nutrient content of one serving (entree) from the potato bar.

To ensure consistency in approach and appropriate handling of complex situations, all salad and theme bar recipes were entered by lead nutrition coders and checked by another lead coder or the project director.

Linking Menu Items and Accompaniments

For purposes of the unweighted nutrient analysis (described below), coders had to link some menu items together after a menu had been entered. Rules for linking foods were based on the procedures used in the SNDA-I study.

Accompaniments were classified into four groups - condiments, spreads, toppings, rnd salad dressings (see Exhibit E.3). The following rules were used to link accompaniments to menu items:

- Salad dressings ware always linked to salacls.
- Toppings that were not part of a salad/theme bar (e.g., shredded cheese or salsa for tacos) were linked to the appropriate entree(s). When more than one topping was offered, the coder indicated whether the linking should use an average topping (when students had the option to select among toppings) or include multiple toppings (when more than one topping was routinely served with a given food).
- Condiments and spreads were only linked to specific menu items when the link between a single condiment or spread and a single menu item was obvious and unambiguous.

Exhibit E. 4
Coding Rules for Salad Bars

The other group of menu items that sometimes had to be linked was separate bread or grain items such as rice or particular types of bread/rolls. If the information provided by cafeteria managers indicated that a bread/grain item was offered along with another menu item, as opposed to being available to all students, the items were linked for purposes of the unweighted analysis. Examples of this situation include rice served with stir-fried chicken and vegetables, a roll served with chicken nuggets, and garlic bread served with spaghetti.

Breakfast Menus

Entry rules for breakfast menus were essentially the same as those for lunch menus; however, an additional step was required to ensure that the unweighted nutrient analysis of breakfast menus was done correctly. This extra step involved specifying the number of bread/grain and/or meat/meat alternate servings included in breakfast menu items. The CN database included this information for individual ingredients as well as for recipe items included in the master recipe file but it had to be added for all new ingredients and all newly created recipes.

In keeping with USDA guidance for food-based menu planning, a serving of bread/grain was equivalent to one slice of bread or an equivalent portion of cereal or other grain products. USDA guidance was used to define volume or weight of equivalent portions (USDA, FNS 1998). Cakes, pies, brownies, and cookies were not counted as bread/grain equivalents.

Quality Control Procedures

During the initial phases of coding, each coder's work was carefully reviewed by the senior project nutritionist or a lead coder to ensure that coding rules were followed, that menu items were appropriately matched to items in the nutrient database, and that portion sizes and other information were entered correctly. Each coder received one-on-one feedback on his or her work for the first three menu surveys entered. If problems were noted after three reviews, the coder continued to receive detailed review and feedback until performance reached an acceptable level.

In addition to this initial review, lead coders conducted quality review checks, reviewing entered records for 20 percent of all menu surveys. "Coder Alert" bulletins were issued as needed to reinforce coding rules or to clarify issues that appeared to be problematic. Coders were required to read and keep a copy of all "Coder Alert" bulletins and to revisit their work as necessary to ensure that coding rules were implemented appropriately.

Lead nutrition coders were available at each shift to consult with coders about questions or issues that arose during coding and entry. The senior project nutritionist and lead coders met with the project director weekly to review progress on data entry and to discuss the need for additional/revised coding guidelines.

Entry Verification

As entry of menu surveys was winding down, a 100 percent manual verification process was instituted. This step was necessary because of numerous complications experienced with the software during data entry. It was determined that some of these problems, which resulted from modifications made to the software to accommodate the volume of data associated with the study, had introduced errors into electronic menu records. For example, entered menu items were sometimes "lost" and the nutrients associated with those items were not included in the analysis of nutrient content.

Nutrition coders completed line-by-line reviews comparing electronic menu records with hard copy menu surveys. Coders verified that every mems item was present, that it had been entered correctly, and that a complete nutrient record accompanied each item. To provide an opportunity for additional quality antrol and cross-checking, coders did not review their own work.

Data Cleaning

After all data were entered, SAS data files were created and a detailed series of cleaning runs was done to check for coding errors. The first set of cleaning rums was meant to identify problems that could be corrected in the NUTRIKIDS files and included the following types of checks:

- Basic data integrity. Each daily menu record was checked to be sure that place holders for incomplete or missing foods no longer existed. The record for each menu item was checked to be sure it included a portion size, information on the number of portions served, an
associated number of servings to be used in the unweighted nutrient analysis (entered automatically by the modified NUTRIKIDS software, as described below), and complete nutrient information.
- Over-reporting of portions served. Daily menu records were checked to be sure that the total number of servings reported for any major food group (except for fruits and vegetables) did not exceed the total number of meals. Instances where this did occur were checked against hard copy menu surveys and editing and data retrieval logs to determine if a correction was needed. (In rare cases, the number of milks or entrees did exceed the total number of meals because schools allowed students to take seconds).
- Out-of-range menu items. An extensive series of range checks was done, using the number of calories per serving in more than 70 minor food groups (described in a subsequent section), to identify menu items that exceeded the 95th percentile or fell below the 5 th percentile. All of these items were checked against hard copy menu surveys to ensure that the data provided were reasonable and that items had been entered correctly. Corrections were made as necessary.
- Bread/grain and meat/meat alternate equivalents assigned to brealfast items. One hundred percent of the bread/grain and meat/meat alternate items included in breakfast menus were reviewed to ensure that serving equivalents were assigned appropriately.
- Appropriate major and minor food group assignments. Complete listings of all menu items assigned to each major and minor food group (see below) were generated. Lists were manually reviewed to ensure that all foods had been assigned to appropriate groups.

After this initial set of cleaning rums was completed and all necessary corrections were made, a second set of runs was done to check for out-of-range menu items. In this pass, the focus was on calories, sodium, and fat content per serving for all minor food groups within the major food groups of meat/meat alternate, bread/grain, entree, and extras (the food group classification scheme is discussed later in this appendix).

Finally, after all item-level cleaning runs were completed, a third set of cleaning runs was used to check for out-of-range nutrient values at the mean level. Daily menus that exceeded the 95th or fth percentile for calories, fat, or sodium - for either the unweighted or weighted nutrient analysis (as described in the next section) - were identified and checked.

Computing the Average Nutrient Content of School Meals

The modified NUTRIKIDS software used in this study computed the total nutrient content of each daily menu as well as an average for the five-day (or, for some schools, four- or three-day) menu. Breakfast and lunch menus were analyzed separately. In addition to calories, the following nutrients and food components were analyzed: protein, total fat, saturated fat, carbohydrate, vitamin A, vitamin C, calcium, iron, cholesterol, and sodium.

For each menu, data on average calorie and nutrient content were compared to customized RDA standards that reflected the range of grades participating in the NSLP and SBP. ${ }^{1}$ Weighted RDA standards for grade groupings that covered more than one established RDA group (1-3 years; 4-6 years; $7-10$ years; 11-14 years; and $15-18$ years) were computed using the methodology developed by USDA and incorporated into all NSMP software systems. This methodology gives equal weight to each age group included in the customized grouping. For example, the weighted RDA standard for an elementary school that encompasses kindergarten (5 -year-olds) through grade 6 (11 -year-olds) is a weighted average that considers the RDA for each of the component age groups: 5 -year-olds, 6 -year-olds, 7 -year-olds, 8 -year-olds, 9 -year-olds, 10 -year-olds, and 11 -year-olds. ${ }^{2}$ The RDA standards for each nutrient would therefore be derived as follows: [(4-6-year-olds RDA *.286) + (7-10-year-olds RDA *.571) + (11-14-year-olds RDA *.143)]

NSMP standards require schools that encompass a broad range of grades (e.g., K-8, K-12, or 6-12) to complete separate analyses for younger and older children because their needs vary so widely. Because each school could be included in the study data base only once, RDA standards for lunch analyses were set equal to grades K-6 (or 1-6) for schools with K-8, K-12, or similar grade spans and to grades 7-12 for schools with 5-12, 6-12 or similar grade spans. For breakfast analyses, the actual grade spans were used because SBP nutrition standards are designed to cover grades K-12.

As described elsewhere in this report, the average nutrient content of school meals was measured using both weighted and unweighted nutrient analyses. The weighted analysis reflects current program regulations for menus planned using NSMP or ANSMP as well as program monitoring requirements for menus planned using the other menu planning options. The unweighted analysis was carried out primarily to permit comparison of data from this study to data from the SNDA-I study (all nutrient analyses in SNDA-I were unweighted). In addition, policy makers were interested in determining whether the choice of nutrient analysis approach (weighted versus unweighted) influences conclusions about the nutritional quality of school meals.

Weighted Nutrient Analysis

A weighted nutrient analysis takes into account the number and type of foods actually served to students, giving greater weight to the nutrient value of foods that are served more frequently. USDA-approved computer software programs for NSMP, such as the NUTRIKIDS software used in this study, are designed to compute the weighted average nutrient content of a meal (menu). For each menu item offered on a given day, the analysis computes the total amount of calories and nutrients included in the foods served to/selected by students (e.g., calories and nutrients in a portion of the food * number of portions served). These values are totaled for all menu items offered. The resulting composite is then divided by the total number of reimbursable meals served to determine the nutrient content of the average meal served to/selected by students each day.

[^31]
Unweighted Nutrient Analysis

In contrast to a weighted nutrient analysis, an unweighted analysis does not incorporate information on student selection patterns. Thus, rather than providing a picture of the nutrient content of the average meal served to students, an unweighted analysis provides information on the nutrient content of the average meal offered to students. An unweighted analysis includes an average serving of every type of food offered.

The methodology used in computing unweighted nutrient averages was based on the approach used in the SNDA-I study and earlier studies of the NSLP and SBP. The basic algorithm is built around the foodbased meal patterns. So, for lunch, an unweighted average includes the following:

- An average serving of milk
- One average entree or meat/meat alternate
- Two average servings of vegetables and/or fruit
- An average serving of grain or bread, if offered separately from entrees
- An average serving of dessert or other extra items (if offered)
- An average serving of unlinked condiments.

As noted previously, salad dressings were always linked to salads, toppings were linked to appropriate food items, and breads/grains were linked to entrees or meat/meat alternates, as appropriate.

For breakfast, the unweighted average includes an average serving of miik; an average serving of fruit and/or vegetable or juice; and two average servings of bread and/or meat equivalents.

These assumptions were largely replicated in the unweighted analysis of SNDA-II data. However, because the data clearly indicated that some schools were offering more than two servings of fruits and vegetables (in keeping with current program emphases), information from the weighted analysis was used to define expectations for fruit and vegetable servings in the unweighted analysis. If the weighted analysis indicated that students were allowed to select more than two servings of fruit and vegetables at lunch, the unweighted analysis assumed the increased number of servings.

To produce unweighted mutrient analyses for each daily menu, the software used a base of 1,000 for the number or reimbursable meals served. Unweighted serving projections were assigned to each menu item, assuming an equal distribution across comparable food items. For example, if four types of milk were offered, 250 servings were assumed for each type of milk. Numbers that did not divide evenly into 1,000 were rounded (e.g., 334, 333, 333 for three choices). ${ }^{3}$ To avoid systematic bias, larger serving estimates were randomly distributed across choices within a day and across days within the week. For example, if

[^32]three milk choices were offered every day, the 334 servings were assigned to a different type of milk each day.

The content of salad bars, food bars, and other multi-component items was also taken into consideration when serving projections were assigned. For example, if a food bar or sack lunch (entered into the analysis as a recipe) included an entree, fruit/vegetables, and a dessert, the number of food bar servings was subtracted from the base when unweighted servings were assigned to fruit/vegetables and desserts in order to avoid double counting.

Exhibit E. 5 illustrates weighted and unweighted servings for a sample high school menu offered in a school that did not use the traditional meal pattern. Unweighted serving assignments assume one serving of milk (even though the information provided for the weighted analysis clearly indicates that many children do not take milk) and one entree. Because the weighted projections suggest that students may take more than two servings of fruits and vegetables (2.8 servings per reimbursable meal, excluding the food bar), the unweighted serving assignments assume three servings of fruits and vegetables per meal. The base of 1,000 meals is reduced by 167 because the food bar, a separate serving line, already includes fruits and vegetables. Therefore, with a base of 833 meals ${ }^{*} 3$ servings, the total number of unweighted fruit and vegetable servings is 2,499 . To determine the number of unweighted servings to assign to each fruit and vegetable, the modified base of 2,499 is divided by the total number of fruit and vegetable choices (five). This translates into approximately 500 servings for each choice.

In addition, while an unweighted analysis normally assumes 1,000 servings for desserts and other extras as well as for additional breads/grains, unweighted serving assumptions in this example are adjusted downward to account for the fact that the brownie is already included in the food bar as well as the fact that the garlic bread is served with the lasagna.

Finally, since the condiments are offered self-serve and not linked to specific entrees, an average serving of condiments (500 servings of each) is included in the analysis. The salad dressing is linked to the tossed salad.

The NUTRIKIDS software was modified to automatically assign most of the serving assumptions needed for the unweighted analysis. This automated approach required that each individual food on the menu be classified into a major food group (described below) so the 1,000 unweighted servings (2,000 or more servings for fruits and vegetables) could be appropriately distributed across the available options. The linking procedures described previously were used to account for situations where an accompaniment or a grain/bread item was served only with a specific menu item. Finally, manual entries were made as needed for menus that included theme bars or sack lunches that contained other menu items such as dessert.

Because assumptions included in the SNDA-I methodology do not reflect how NSMP/ANSMP menus are structured and marketed to students, a separate analysis was completed in which the unweighted analysis for NSMP/ANSMP sites was modified to reflect the basic differences in menu structure. This analysis assumed an average serving of milk, an average entree, some number of average "sides" (all menu items offered other than milk and entrees) and an average serving of condiments. The number of side dishes included in the analysis was based on the meal production data. As noted in Chapter Five,

Exhibit E. 5

Comparison of Assumptions for Weighted and Unweighted Nutrient Analyses

Note: Information for weighted analysis provided by cafeteria manager. Projections for unweighted analysis assigned by NUTRIKIDS software.
incorporation of the revised unweighted analysis for NSMP/ANSMP sites had no material effect on the results. Thus, a decision was made to use only one version of the unweighted analysis - the version that essentially replicated SNDA-I - in this report.

Food Group Codes

Food codes in the CN-3 nutrient database do not include an imbedded food group classification system. The standard NUTRIKIDS software included only a simple classification system, built around the major meal components used in the food-based NSLP and SBP meal patterns. This system was too limited to meet the needs of the SNDA-II study. Therefore, an expanded set of food groups was developed, in consultation with USDA, and incorporated into the modified NUTRIKIDS software. Nutrition coders assigned major and minor food group codes to all menu items.

The food group system was further expanded during the analysis phase of the contract. In the end, the classification system used for food group analyses included seven major food groups and 81 minor food groups. The first four major food groups are identical to the NSLP and SBP meal patterns. The latter three major groups allowed for combination foods and additional items not considered in the meal patterns. The food group classification system is summarized in Exhibit E.6.

Major and Minor Food Groups

Code	Long Description	Examples
Msisit		
MILK1	whole, unflavored	whole milk with no added flavoring
MILK2	lowfat, unflavored (1\%)	1\% milk with no added flavoring
MILK3	skim and $1 / 2 \%$, unflavored	nonfat or skim milk with no added flavoring
MILK4	lowfat, flavored (1\%)	1\% chocolate milk, 1% strawberry milk, 1% coffee milk
MILK5	skim and $1 / 2 \%$, flavored	nonfat chocolate milk, nonfat strawberry milk, nonfat coffee milk
MILK6	whole, flavored	chocolate whole milk, coffee whole milk, strawberry whole milk
MILK7	2\% lowfat, unflavored	2\% milk with no added flavoring
MILK8	2\% lowfat, flavored	2\% chocolate milk, 2% strawberry milk, 2% coffee milk
MILK9	milkshake	milkshake or thick sisake (any flavor)
CNDFR	canned fruit	canned fruit of any kind, including canned fruit cocktail or fruit salad
COMFR	combination of fresh, canned, frozen, and/or dried fruits	fruit salad made with both fresh and canned fruits
DRYFR	dried fruit	raisins, dates, figs, trail mix
FSHFR	fresh fruit	fresh fruit of any kind, including fruit salad made with only fresh fruits
FRZFR	frozen fruit	frozen fruit of any kind, including frozen fruit mixtures, frozen juice bars
JUICC	full-strength citrus juice, including juice blends w/ citrus (100% juice only)	orange, grapefruit, pineapple-orange juice
JUICO	full-strength non-citrus juice (100% juice colly) including vegetable juice	apple, grape, pineapple, non-citrus blends, V-8 juice, tomato juice
CKVEG	cooked vegetables other than potatoes and French fries	any vegetable that is served cooked, whether made from fresh, frozen, or canned vegetables
DFPOT	French fries and other processed potatoes (deep fried)	French fries, shoestring fries, curly fries, tater tots, hash browns specified as deep-fried
OFPOT	French fries and other processed potatoes (oven fried)	French fries, shoestring fries, curly fries, tater tots, hash browns specified as oven-fried or not specified as either deep-fried or oven-fried

Code	Long Description	Examples
POTAT	potatoes other than French fries or comparable processed potato products (includes sweet potatoes)	mashed or whipped potato, baked potato, boiled potatoes, baked sweet potatoes, AuGratin, scalloped, or O'Brien potatoes
LETOM	lettuce and/or tomato served as a vegetable choice for all students	lettuce and/or tomato slices, chopped letuce and/or tomato
SALAD	green salad, non-entree salad bars (no meat/meat alternates)	tossed salad, garden salad, lettuce salad, side salad bars
OTHSA	Other types of non-entree salads	carrot and raisin salad, cole slaw, Waldorf salad, 3-bean salad, potato salad
RWVEG	fresh, raw vegetables, other than green salads, lettuce and tomato, or other saleds	raw vegetable sticks or pieces
LEGUM	legumes (counted as vegetables)	baked beans, refried beans, lima beans, any "non-green" beans or peas not counted as meat alternate
OTVEG	vegetable scups and vegetable mixtures/casseroles	tomato soup, minestrone soup, broccoli chese casserole, creamed com, green bean casserole
CHS	cheese	cottage cheese, slice of cheese (American, cheddar, mozzarella, etc.)
CHX	breaded/fried chicken nuggets, patties, and similar products	chicken cutlets, patties, filets, nuggets, similar products - with breading
EGGS	eggs	scrambled egg, hard-cooked egg, fried egg, omelet, egg salad
MPF	plain (unbreaded and not fried) meatpoultry/ish	chicken, fish, turkey, beef, ham that is unbreaded and not fried (includes Canadian bacon, meatballs, meatloaf)
MPFBD	breaded, processed and/or fried meal/poultry/fish other than chicken nuggets, patties, and similar products	fish sticks, pork fritters, fried fish, fried chicken parts, country fried steak, turkey fritters
MPFGM	meatpoultry/lish with mayonnaise or gravy	tuna salad, chicken salad, diax' turkey and gravy, salisbury steak
MTLEG	legume as meat alternate (including peanuts and peanut butter) NOTE: With the exception of peanuts and peanut butter, these items are usually counted as vegetables	peanuts, peanut butter, baked lvans, refried beans, or other "non-green" beans or pens counted as a meat alternate
SAUS	sausage, frankfirters, and cold cuts	sausage pattie/links, Italian/Polish sausage, bologna, hot dog, salami
YOGRT	yogurt	fruited, flavored or plain yogurt (including nonfat or lowfat)

Code	Long Description	Examples
CHCCS	sandwich with cheese and/or cold cuts	cheese sandwich, grilled cheese, Italian or American subs, bologna and cheese, ham and clieese, roast beef and cheese, any sandwich made with cheese (other than those included in CHAMB)
MAYSW	sandwich with mayonnaise-based meat salads	egg saled sandwich, turkey salad sandwich, chicken saled sandwich, tuna salad sandwich
FRYSW	sandwich with breaded/fried meat, poultry, or fish (no cheese)	breaded chicken patty sandwich, fishwich, breaded veal or pork cutlet sandwich, chicken fried steak sandwich
PIZZA	pizza or calzone - without meat	any slice, individual or pocket pizza that is plain cheese or vegetarian
PIZZM	pizza or celzone - with meat	any slice, individual or pocket pizza that includes sausage, pepperoni, hamburger, ham or other ni at
SPAO	mixtures with a pasta or noodle base	spaghetti w/ sauce and/or ment, lasagne, revioli, macaroni and cheese, turkey tetrazzini
TACO	Mexican-style entree	taco, enchilade, burrito, nachos, tamale, frijitas, quessadillas
MIX	other mixtures with meat, grain, and possibly vegetables	beef or chicken stir fyy, chop suey, beef stew, shepherd's pie, chicken pot pie, quiche, chili (with or without meat), baked potato with cheese
CHFSL	Chef's salad or other salad plate	Chef's salad, chicken Caesers salad, tuna saled plate, cottage cheese and fruit plate
SANBR	sandwich bar/deli bar	sandwich ber
THMBR	other entree theme ber	potato bar, pasta bar, taco bar
SALBE	entree salad bar - elementary school	entree salad bar in elementary school
SALBS	entree saled bar - secondary school	entree saled bar in secondary school
BAGML	bag or sack meals	pre-peakaged lunches or breakfists
Wer		
BKDES	baked desserts (cakes, cookies, brownies)	chocolate cake, oatmeal cookie, brownies, peanut butter bars
CHIPS	snack chips (including popcorn, but not pretzels, corn chips or plain tortilla chips)	potato chips, Doritos, Funyons, cheese curls
DESFR	dessert item containing fruit or juice	fruited gelatin, fruit cobblers, fruit pies, fruit crisps
OTDES	other desserts (non-fruited gelatin, ice cream, sherbet, pudding)	jello whopping, vanilla ice cream, butterscotch pudding
FTDRK	fruit drinks (not 100% juice)	fruit punch, orange drink, cranberry juice drink

Code	Long Description	Eramples
Resisiside mix		
SOUP	non-vegetablehon-entree soups and cream soups	chicken noodle soup, cream of mushroom soup, clam chowder
OTHBV	other beverages	coffee, tea, iced tea
OTHER	other miscelleneous menu items	bacon, other misceellaneous side dishes
LCOND	fat-freehowfat condiments	barbecue sauce, honey, ketchup, mustard, pickles, relish, salsa
COND	higher-fat condiments	tartar sauce, mayonnaise
LSLDG	fat-freelowfat salad dressings	any dressing or vegetable dip that is nonfat, lowfiat, or low calorie
SLIDRG	regular salad dressings	Italian dressing, ranch dressing, French dressing, all regular dressings and vegetable dips
LSPRD	fat-free/lowfat spreads	cranberry sauce, jam, jelly, syrup, sugar, fruit sauces, fat-freefowfat cream cheese, fatfree/lowfat sour cream
SPRDS	higher-fat spreads	butter, regular cream cheese, margarine, regular sour cream
TOPPG	toppings	cheese sauce, gravies, chili, grated cheese, onions, olives, bacon, bacon bits, hot peppers, other items used as toppings

than the entire state population has. For example, suppose a state had experienced stable FSP and UI Program participation and rising per capita income. Our regression estimator would predict a stable or declining percentage of eligible infants and children, implying that a sample estimate showing a large increase in WIC eligibles is too high. The regression estimate will be lower than the sample estimate for such a state. On the other hand, if the sample data for a state show a much smaller increase in eligible infants and children than expected in light of the observed changes in FSP and UI Program participation and per capita income, the regression estimate for that state will be higher than the sample estimate.

5. Using "shrinkage" methods, average the sample estimates of change and the predictions of change.

As noted, the limitation of the sample estimator is imprecision. The limitation of the regression estimator is called "bias." Some states really have larger or smaller increases in WIC eligibles than we expect (and predict with the regression estimator) based on changes in FSP and UI Program participation and per capita income. Such errors in regression estimates reflect bias.

These limitations arise for the following reasons. The sample estimator uses only sample data for one state to obtain an estimate for that state. It does not use sample data for other states or administrative records data. Although the regression estimator borrows strength, using data from all the states and administrative records data, it makes no further use of the sample data after estimating the regression line. It assumes that the entire difference between the sample and regression estimates is sampling error, that is, error in the sample estimate. No allowance is made for prediction error, that is, error in the regression estimate. Although not ra, if any, true state values lie on the regression line, the regression estimator assumes they do.

Using all of the information at hand, a shrinkage estimator addresses the limitations of the sample and regression estimators by combining the sample and regression estimates, striking a compromise. As illustrated in Figure II.3, a shrinkage estimator takes a weighted average of the

FIGURE II. 3

SHRINKAGE ESTIMATION

More Precise Sample Estimate, Worse Fitting Regression Line \Rightarrow More Weight on Sample Estimate

Sample Estimate 4\%	Shrinkage Estimate 5\%	Regression Estimate 8\%

Less Precise Sample Estimate, Better Fitting Regression Line \Rightarrow Less Weight on Sample Estimate

\bullet
Sample Estimate

4\%

Shrinkage
Estimate 7\%

Regression
Estimate 8\%
sample and regression estimates. Generally, the more precise the sample estimate for a state, the closer the shrinkage estimate will be to it. The larger samples drawn in large states support more precise sample estimates, so shrinkage estimates tend to be closer to the sample estimates for large states. Given the precision of the sample estimate for a state, the weight given to the regression estimate depends on how well the regression line "fits." If the regression estimator cannot find good predictors reflecting why some states have larger increases in WIC eligibles than other states, we say that the regression line "fits poorly." The shrinkage estimate will be farther from the regression estimate and closer to the sample estimate when the regression line fits poorly. In contrast, the shrinkage estimate will be closer to the regression estimate and farther from the sample estimate when the regression line fits well. Striking a wmpromise between the sample and regression estimators, the shrinkage estimator strikes a compromise between imprecision and bias. The sample and regression estimates are optimally weighted to improve accuracy by minimizing a measure of error that reflects both imprecision and bias. By accepting a little bias, the shrinkage estimator may be substantially more precise than the sample estimator. By sacrificing a little precision, the shrinkage estimator may be substantially less biased than the regression estimator.

Table II. 2 presents state shrinkage estimates of the change between 1989 and 1992 in the percentage of infants and children who were income eligible for WIC. Table II. 2 also displays the sample and regression estimates from Steps 3 and 4.
6. Add the shrinkage estimate of the change between 1989 and 1992 to the census estimate of the percentage eligible in 1989 to get a shrinkage estimate of the percentage eligible in 1992.

Table II. 3 presents census estimates of the percentage eligible in 1989 from Step 1, shrinkage estimates of the change in the percentage eligible between 1989 and 1992 from Step 5, and shrinkage estimates of the percentage eligible in 1992 from this step. The shrinkage estimate of change added to the census estimate for 1989 gives the shrinkage estimate for 1992. In other words, where a state starts plus how much it changes tells us where the state ends up. For example, 28.543 percent of

TABLE II3
PERCENTAGES OF INFANTS AND CHILDREN INCOME ELIGIBLE: CENSUS AND SHRINKAGE ESTIMATES

State	$\begin{gathered} 1989 \\ \text { (Census) } \end{gathered}$	Shrinkage Estimate of Change Between 1989 and 1992	Shrinkage Estimate for 1992
Alabama	46.302	2.506	48.808
Alaska	41.367	8.238	49.605
Arizona	45.474	6.336	51.810
Arkansas	52.206	3.977	56.183
California	37.760	8.619	46.379
Colorado	35.057	0.133	36.190
Connecticut	21.200	9.044	30.244
Delaware	28.543	6.788	35.331
District of Columbia	46.241	12.032	58.273
Florida	40.021	10.907	50.928
Georgia	40.615	4.785	45.400 44.146
Hawaii	36.821	7.325	44.146 48.828
Idaho	46.808	2.020	48.828
Illinois	33.183	4.638	37.821
Indiana	35.470	6.221	41.691
Iowa	36.846	2.634	39.480
Kansas	36.760	0.620	37.380
Kentucky	48.123	2.409	50.532 53.628
Louisiana	52.651	0.977 10.510	53.628 45.038
Maine	34.528	10.510	
Maryland	24.246	8.268	32.514 26.683
Massachusetts	25.087	1.596	26.683
Michigan	37.172	4.331	41.503 30.816
Minnesota	29.362	1.454	30.816
Mississippi	57.544	2.436	59.980
Missouri	38.929	5.911	44.840
Montana	46.639	2.366	49.005 38.291
Nebraska	38.100	0.191	38.291
Nevada	34.353	7.788	42.141
New Hampshire	20.531	7.436	27.967
New Jersey	22.446	6.509 6.123	28.955 60.118
New Mexico	53.995	6.123	60.118 42053
New York	35.136	6.917	42.053
North Carolina	39.911	4.608	44.519
North Dakota	42.554	-0.184	42370
Ohio	37.048	2.522	39.570
Oklahoma	47.638	5.145	52783 44.709
Oregon	39.879	4.830	44.709
Pennsyivania	33.428	3.904 10390	37.332 40.213
Rhode Island	29.823	10.390	40.213
South Carolina	43.847	6.717	50.564
South Dakota	47.214	-1.148	46.066
Tennessee	44.004	7.873	51.87
Texas	45.835	6.306	52.141
Utah	39.999	0.227	40.226
Vermont	31.164	9.442	40.606
Virginia	31.369	3.033	34.402 37.805
Washington	34.764	3.041	37.805 $\mathbf{5 6 . 4 7 1}$
West Virginia	51.603	4.868 2413	56.471 36507
Wisconsin	34.094 41.211	2.413 1.212	36.507 42.423
United States	37.789	5.590	43.379

infants and children were income eligible in Delaware in 1989, and that figure rose by 6.788 percentage points between 1989 and 1992 according to our shrinkage estimator. Therefore, we estimate that $28.543+6.788=35.331$ percent of infants and children were income eligible in Delaware in 1992.
7. Multiply the shrinkage estimate of the percentage eligible by the state population of infants and the state population of children to get preliminary shrinkage estimates of the numbers of eligible infants and children.

To obtain separate estimates for infants and children, we have assumed that the percentage of infants who were income eligible in a state is the same as the percentage of children who were income eligible. Our estimate of that percentage was obtained in Step 6.

To obtain estimated numbers from estimated percentages, we require state population estimates for both infants and children. The population estimates we used pertain to the resident population on July 1, 1992 and were developed by the U.S. Bureau of the Census from census and administrative records (mainly vital statistics) data. These estimates are often called "independent" estimates because they are not based on CPS or other sample data. In broad terms, they were derived by subtracting from census counts persons "exiting" the population between April 1, 1990 and July 1, 1992 (due to death or net out-migration) and adding persons "entering" the population (due to birth or net inmigration). Because infants in the July 1, 1992 population had not yet been born on April 1, 1990, census data have no bearing on the population estimates for infants. Those estimates are based entirely on vital statistics data and other administrative records data needed to account for migration. Likewise, census data are irrelevant to the population estimates for children age 1 and some children age 2. (The population estimates for children ages 1 through 4 were obtained by summing estimates for each year in that range.)

Table II. 4 displays preliminary shrinkage estimates of the number of infants and the number of children who were income eligible for WIC in 1992. It also shows shrinkage estimates of the percentages eligible from Step 6 and state population estimates for infants and children developed

TABLE 1.4
PREI IMINARY SHRINKAGE ESTIMATES OF THE NUMBERS OF INFANTS AND CHILDREN INCOME EUGIBLE IN 1992

State	Shrinkage Estimate of Percentage Eligible	Population		Preliminary Shrinkage Estimate of Number Eligible	
		Infants	Children	Infants	Children
Alabama	48.808	61,680	236,274	30,105	115,321
Alaska	49.605	11,513	45,998	5,711	22.817
Arizona	51.810	65,911	254,228	34,148	131,716
Arkansas	56.183	34,457	135,906	19,359	76,356
California	46.379	592,244	2,169,211	274,677	1,006,058
Colorado	36.190	53,589	209,645	19,394	75,871
Connecticut	30.244	46,580	189,045	14,088	57,175
Delaware	35.331	10,769	41,456	3,805	14,647
District of Columbia	58.273	8,321	31,688	4,849	18,466 382817
Florida	50.928	190,419	751,682	96,977	382,817
Georgia	45.400	109,227	422,780	49,589	191,942
Hawaii	44.146	19,608	71,900	8,656	31,741
Idaho	48.828	17,069	67,048	8,334	32,738
Ilinois	37.821	188,287	713,032	71,212	269,676
Indiana	41.691	82,321	323,759	34,320	134,978 61359
Iowa	39.480	37,743	155,417	14,901	61,359
Kansas	37.380	36,797	150,458	13,755	56,241
Kentucky	50.532	52,901	206,213	26,732	104,204
Louisiana	53.628	70,356	270,028	37,731 $\mathbf{7}, 084$	144,811
Maine	45.038	15,595	66,707	7,024	30,043
Maryland	32.514	75,832	302,839	24,656	98,465
Massachusetts	26.683	86,239	340,993	23,011	90,987
Michigan	41.503	138,700	575,590	57,565	238,887
Minnesota	30.816	64,757	269,688	19,956	83,107
Mississippi	59.980	42,485	160,775	25,483 33,461	96,433
Missouri	44.840	74,623	301,457	33,461	135,173
Montana	49.005	11,367	46,728	5,570	22,899
Nebraska	38.291	22,833	95,834	8,743	36,696 35,643
Nevada	42.141	21,921	84,581	9,238	35,643 18,530
New Hampshire	27.967	15,487	66,256	4,331	18,530
New Jersey	28.955	117,976	455,968	34,160	132,026
New Mexico	60.118	27,816	105,955	16,722	63,698
New York	42.053	281,522	1,079,972	118,388	454,161
North Carolina	44.519	101,190	393,791	45,049	175,312
North Dakota	42.370	8,722	36,102	3,696 65057	15,296
Ohio	39.570	164,409	634,255	65,057	250,975
Otlahoma	52.783	47,301	185,746	24,967	98,042
Oregon	44.709	41,279	169,723	18,455	75,881
Peansyivania	37.332	162,326	649,572	60,600	242,498
Rhode Island	40.213	14,579	56,348	5,863	22,659
South Carolina	50.564	55,711	217,352	28,170	109,902
South Dakota	46.066	11,029	43,857	5,081	20,203
Tennessee	51.877	72,929	281,056	37,833	145,803
Texas	52.141	317,748	1,183,890	165,677	617,292 56,913
Utah	40.226	36,513	141,484	14,688	56,913
Vermont	40.606	7,532	32,366	3,058	13,143
Virginia	34.402	95,568	371,646	32.877	127,854 118,173
Washingtoa	37.805	78,349	312,585	29,620	118,173
West Virginia	56.471	21,856	86,392	12,342 $\mathbf{2 5 , 3 0 6}$	105,780
Wisconsin	36.507	69,318	289,261	25,306	105,001
Wyoming	42.423	6,718	27,626	28550	11,720
United Stetes	43.379	4,000,022	15,512,163	1,737,837	6,721,734

by the Census Bureau. According to Table II.4, there were 10,769 infants and 41,456 children living in Delaware in 1992. Our shrinkage estimate is that 35.331 percent of those infants and children were income eligible. Therefore, our preliminary shrinkage estimates of the numbers eligible are $(35.331 \div 100) \times 10,769=3,805$ infants and $(35.331 \div 100) \times 41,456=14,647$ children.
8. Control the preliminary state shrinkage estimates of the numbers of eligible infants and children to sum to the national totals for eligible infants and children obtained from the CPS.

The preliminary state shrinkage estimates derived in Step 7 sum to $1,737,837$ eligible infants and 6,721,734 eligible children nationwide. According to the March 1993 CPS, there were $1,717,743$ eligible infants and $6,925,815$ eligible children in the entire U.S. The most recent national sample estimates are typically used to develop the budget for the WIC Program. To obtain final shrinkage estimates for states that sum (aside from rounding error) to the national totals from the most rècent CPS (March 1993), we multiply each of the preliminary state shrinkage estimates for infants by $1,717,743 \div 1,737,837(\approx 0.9884)$ and each of the preliminary state shrinkage estimates for children by $6,925,815 \div 6,721,734(\approx 1.0304)$. This ensures that the estimates used to allocate funds are consistent with the estimates generally used to determine total program funding. The final shrinkage estimates are presented in the next chapter.

III. STATE ESTIMATES OF WIC ELIGIBLES FOR 1992

Table III. 1 presents our final state shrinkage estimates of the number of infants and the number of children who were income eligible for WIC in 1992. The strength of these estimates is that they are timely relative to census estimates and precise relative to CPS estimates. As documented in the appendix, the shrinkage estimates have much smaller standard errors and narrower confidence intervals than the CPS sample estimates. Table III. 2 displays approximate 90 -percent confidence intervals showing the uncertainty remaining after using shrinkage estimation. One interpretation of a 90 -percent confidence interval is that there is a 90 percent chance that the true value-that is, the true number of eligibles--lies in the estimated interval. A wide interval means that we are very uncertain about the true value. According to our calculations, a shrinkage confidence interval is, on average, only about 39 percent as wide as the corresponding sample confidence interval. Thus, shrinkage substantially reduces our uncertainty.

The Food and Consumer Service (FCS) of the U.S. Department of Agriculture used the final shrinkage estimates of infants and children income-eligible for WIC in 1992 to determine state WIC food grants for fiscal year 1995. From the final shrinkage estimates in Table III.1, FCS calculated each state's "fair share" of total fiscal year 1995 WIC food funds. A state's fair share is its percentage share of the national number of eligible infants and children. Thus, for example, Delaware--which has about 0.2 percent $[(3,761+15,092) \div(1,717,746+6,925,819)]$ of all eligible infants and children-has a fair share of about 0.2 percent of total WIC food funds.

According to the WIC food funding formula (7 C.F.R. 8246.16), a state's WIC food grant is determined by comparing the fair share amount to the prior year food grant. If the prior year grant equals or exceeds the fair share amount, the state is entitled to receive only the prior year amount, adjusted for inflation (if total food funds are adequate to provide inflation increases to all states). If the prior year grant is below the fair share amount, the state is entitled to received an inflation

TABLE III. 1
FINAL SHRINKAGE ESTIMATES OF THE NUMBERS OF INFANTS AND CHILDREN INCOME ELIGIBLE IN 1992

State	Infants	Children
Alabama	29,757	118,822
Alaska	5,645	23,510
Arizona	33,754	135,715
Arkansas	19,135	78.674
California	271,501	1,036,604
Colorado	19,170	78,174
Connecticut	13,925	58,911
Delaware	3,761	15,092
District of Columbia	4,793	19,026
Florida	95,855	394,439
Georgia	49,016	197,770
Hawaii	8,556	32,705
Idaho	8,238	33,732
Illinois	70,389	277,864
Indiana	33,924	139,077
Iowa	14,729	63,222
Kansas	13,596	57,949
Kentucky	26,423	107,367
Louisiana	37,294	149,207
Maine	6,942	30,956
Maryland		101,455
Massachusetts	22,745	93,750
Michigan	56,899	246,140
Minnesota	19,725	85,630
Mississippi	25,188	99,361
Missouri	33,074	139,277
Montana	5,506	23,594
Nebraska	8,642	37,810
	9,131	36,725
New Hampshire	4,281	19,092
New Jersey	33,765	136,034
New Mexico	16,529	65,632
New York	117,020	467,950
North Carolina	44,528	180,635
North Dakota	3,653	15,761
Ohio	64,304	258,595
Oklahoma	24,678	101,019
Oregon	18,242	78,185
Pennsylvania	59,899	249,861
Rhode Island	5,795	23,347
South Carolina	27,844	113,239
South Dakota	5.022	20,817
Tennessee	37,396	150,230
Texas	163,761	636,034
Utah	14,518	58,641
Vermont	3,023	13,542
Virginia	32,497	131,735
Washington	29,277	121,761
West Virginia	12,200	50,268
Wirconsin	25,013	108,807
Wyoming	2,817	12,076
United States	1,717,746	6,925,819

TABLE III. 2
APPROXIMATE 90-PERCENT CONFIDENCE INTERVALS FOR SHRINKAGE ESTIMATES

State	Number of Eligible Infants		Number of Eligible Children	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Alabama	27,266	32,248	108,874	128,770
Alacka	5,135	6,155	21,386	25,634
Arizona	30,835	36,673	123,977	147,453
Arkanses	17,845	20,425	73,371	83,977
California	257,990	285,012	985,020	1,088,188
Colorado	17,073	21,267	69,621	86,727
Connecticut	12,073	15,777	51,077	66,745
Delaware	3,357	4,165	13,470	16,714
District of Columbia	4,337	5,249	17,215	20.837
Florida	89,771	101,939	369,404	419,474
Georgia	44,622	53,410	180,042	215,498
Hawaii	7,598	9,514	29,042	36,368
Idaho	7,614	8,862	31,176	36,288
Illinois	64,462	76,316	254,466	301,262
Indiana	31,037	36,811	127,240	150,914
Iowa	13,577	15,881	58,278	68,166
Kansas	12,214	14,978	52,058	63,840
Kentucky	24,375	28,471	99,045	115,689
Louisiana	34,423	40,165	137,719	160,695
Maine	6,305	7,579	28,116	33,796
Maryland	21,706	27,036	90,363	112,547
Massachusetts	18,691	26,799	77,041	110,459
Michigan	52,016	61,782	225,018	267,262
	17,135	22,315	74,385	96,875
Mississippi	23,610	26,766	93,137	105,585
Missouri	30,141	36,007	126,927	151,627
Montana	5,065	5,947	21,703	25,485
Nebraska	7,765	9,519	33,975	41,645
Nevada	8,281	9,981	33,307	40,143
New Hampshire	3,788	4,774	16,892	21,292
New Jersey	30,561	36,969	123,128	148,940
New Mexico	$15,214$	17,844	60,411	70,853
New York	109,312	124,728	437,125	498,775
North Carolina	41,469	47,587	168,227	193,043
North Dakota	3,263	4,043	14,078	17,444
Ohio	59,538	69,070	239,427	277,763
Otlahoma	23,016	26,340	94,216	107,822
Oregon	16,713	19,771	71,632	84,738
Pennsylvania	54,319	65,479	226,586	273,136
Rhode Island	5,210	6,380	20,989	25,705
	25,848	29,840	105,123	121,355
South Dakota	4,548	5,496	18,852	22,782
Tennessee	34,165	40,627	137,249	163,211
Texas	151,491	176,031	588,377	683,691
Utah	13,063	15,973	52,763	64,519
Vermont	2,711	3,735	12,146	14,938
Virginia	28,850	36,144	116,951	146,519
Weahington	26,514	32,040	110,269	133,253
Wert Virginia	11,283	13,117	46,492	54,044
Wisconsin	22,368	27,658	97,300	120,314
Wyoming	2,497	3,137	10,706	13,446

increase plus additional funds for program growth (if program growth funds are available after providing all states with inflation increases). In the initial fiscal year 1995 fund allocation, 19 states were below fair share and received program growth funds. Eight Indian Tribal Organizations (ITOs), which are authorized to participate in the WIC Program as state agencies, were also identified as below fair share. The eligibles estimates used to determine WIC food grants for ITOs were derived from 1990 decennial census data and March 1993 CPS data, but were not developed using the shrinkage estimation procedure described in Chapter II.

Using the shrinkage estimator described in Chapter II, we are able to substantially reduce our uncertainty about the numbers of infants and children who were eligible for WIC. In the future, there may be an opportunity to reduce uncertainty even further by enhancing our shrinkage estimator to use still more data. The estimator now uses census estimates for the "base" year (1989) and CPS estimates for the "current" year (1992 in this report-the year for which we are developing shrinkage estimates). Estimates for intervening years are not used, although CPS data for obtaining such estimates are available. With each intervening year, we are ignoring more information that could be relevant. An unusually large increase in WIC eligibles over three years, for example, would be more plausible if it appeared to consist of a series of modest increases rather than two small decreases followed by one enormous jump. An advantage of shrinkage methods is that they are powerful enough to allow such information to be taken into account in a systematic, rather than an ad hoc, way. Although the estimation procedure would be more complicated, an enhanced shrinkage estimator would be conceptually the same as the current estimator and might yield even better state estimates of WIC eligibles.

Accuracy might also be improved by using data that incorporate an adjustment for the census undercount. Before CPS data are released, they are made consistent with Census Bureau population estimates. When 1992 eligibles estimates were needed for calculating fiscal year 1995 WIC grants, the available CPS data were consistent with population estimates based on unadjusted decennial
census data (as well as vital statistics and other administrative records data). CPS data released subsequently are consistent with adjusted population estimates. Therefore, it is expected that future estimates of WIC eligibles will reflect an adjustment for the census undercount.

REFERENCES

DuMouchel, William H., and Jeffrey E. Harris. "Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species." Journal of the American Statistical Association, vol. 78, no. 382, June 1983, pp. 293-315.

Ericksen, Eugene P., and Joseph B. Kadane. "Estimating the Population in a Census Year: 1980 and Beyond." Journal of the American Statistical Association, vol. 80, no. 389, March 1985, pp. 98 131.

Fay, Robert E., and Roger Herriott. "Estimates of Incomes for Small-Places: An Application of James-Stein Procedures to Census Data." Journal of the American Statistical Association, vol. 74, no. 366, June 1979, pp. 269-277.

Fay, Robert E., Charles T. Nelson, and Leon Litow. "Estimation of Median Income for 4-Person Families by State." In Indirect Estimators in Federal Programs. Statistical Policy Working Paper no. 21. Washington, DC: Office of Management and Budget, July 1993.

Fisher, Gordon M. "Poverty Guidelines for 1992." Social Security Bulletin, vol. 55, no. 1, Spring 1992, pp. 43-46.

Ghosh, M. and J.N.K. Rao. "Small Area Estimation: An Appraisal" (with comments). Statistical Science, vol. 9, no. 1, February 1994, pp. 55-93.

Hogan, Howard. "The 1990 Post-Enumeration Survey: Operations and Results." Journal of the American Statistical Association, vol. 88, no. 423, September 1993, pp. 1047-1060.

Rao, J.N.K., C.F.J. Wu, and K. Yue. "Some Recent Work on Resampling Methods for Complex Surveys." Survey Methodology, vol. 18, no. 2, December 1992, pp. 209-217.

Schirm, Allen L. "The Relative Accuracy of Direct and Indirect Estimators of State Poverty Rates." 1994 Proceedings of the Section on Survey Research Methods. Alexandria, VA: American Statistical Association, 1994.

Schirm, Allen L., Gary D. Swearingen, and Cara S. Hendricks. "Development and Evaluation of Alternative State Estimates of Poverty, Food Stamp Program Eligibility, and Food Stamp Program Participation." Washington, DC: Mathematica Policy Research, December 1992.

Sigma One Corporation. Estimates of Persons Income Eligible for the Special Supplemental Food Program for Women, Infants, and Children (WIC) in 1989: National and State Tables. Alexandria, VA: U.S. Department of Agriculture, Food and Nutrition Service, Office of Analysis and Evaluation, August 1993.
U.S. Department of Commerce, Bureau of the Census. Statistical Abstract of the United States. Washington, DC: U.S. Government Printing Office, 1993a.
U.S. Department of Commerce, Bureau of Economic Analysis. Survey of Current Business, vol. 73, no. 9. Washington, DC: U.S. Government Printing Office, September 1993b.
U.S. Department of Commerce, Bureau of the Census. Statistical Abstract of the United States. Washington, DC: U.S. Government Printing Office, 1991a.
U.S. Department of Commerce, Bureau of Economic Analysis. Survey of Current Business, vol. 71, no. 8. Washington, DC: U.S. Government Printing Office, August 1991 b.

APPENDIX
THE ESTIMATION PROCEDURE: ADDITIONAL TECHNICAL DETAILS

This appendix provides additional information and technical details for several of the steps in our estimation procedure. For Step 2, we discuss how we calculated sample estimates and their standard errors. For Step 4, we provide complete definitions and data for calculating values for the three predictor variables in our regression model. We also list the other variables that we considered as potential predictors. For Step 5, we present the equations used to calculate shrinkage estimates and their standard errors. We also discuss at the end of this Appendix how we derived confidence intervals. For some steps, we provide, as needed, few or no additional details.

1. From the most recent census (1990), derive state estimates of the percentage of infants and children who were income eligible.
2. From the most recent CPS (March 1993), derive state sample estimates of the percentage of infants and children who were income eligible.

Table A. 1 displays sample estimates and estimated standard errors. We obtained CPS sample eligibility estimates with the same methodology used by the Census Bureau to calculate poverty estimates for individuals except (1) we compared a family's income to 185 percent, rather than 100 percent, of the applicable poverty guideline; (2) we used the poverty guidelines shown in Table A.2. rather than the poverty thresholds developed by the Census Bureau for official government statistical (as opposed to administrative) purposes; and (3) we counted secondary individuals under age 15 (if they fell in the age ranges for infants and children) as poor/eligible, rather than excluding them. ${ }^{1}$ An infant or child is income eligible for WIC if his or her family's income is less than or equal to 185 percent of the poverty guideline for that family.

The WIC poverty guidelines for 1992 in Table A. 2 were obtained by averaging "HHS" poverty guidelines for 1991 and 1992. We averaged poverty guidelines for consecutive calendar years because the WIC program year runs from July 1 of one calendar year to June 30 of the following calendar

[^33]TABLE A. 1
PERCENTAGES OF INFANTS AND CHILDREN INCOME ELIGIBLE

State	1989 Estimate (Census)	$\begin{gathered} 1992 \\ (\text { CPS }) \end{gathered}$		Change Between 1989 and 1992	
		Estimate	Standard Error	Estimate	Standard Error
Alabema	46.302	44.476	8.422	-1.826	8.422
Alaska	41.367	41.355	5.330	-0.012	5.330
Arizona	45.474	42.802	5.673	-2.672	5.673
Arkansas	52.206	53.929	7.405	1.723	7.405
California	37.760	46.573	1.687	8.813	1.687
Colorado	36.057	36.754	6.631	0.697	6.631
Connecticut	21.200	34.766	9.040	13.566	9.040
Delaware	28.543	32.065	5.814	3.522	5.814
District of Columbia	46.241	67.187	13.154	20.946	13.154
Florida	40.021	49.457	2.446	9.436	2.446
Georgia	40.615	40.193	6.443	-0.422	6.443
Hawaii	36.821	46.620	6.187	9.799	6.187
Idaho	46.808	46.822	5.548	0.014	5.548
Ilinois	33.183	40.696	3.736	7.513	3.736
Indiana	35.470	47.088	5.924	11.618	5.924
Iowa	36.846	41.081	3.207	4.235	3.207
Kansas	36.760	34.028	5.389	-2.732	5.389.
Kentucky	48.123	53.568	8.401	5.445	8.401
Louisiana	52.651	55.899	11.137	3.248	11.137
Maine	34.528	47.455	11.215	12.927	11.215
Maryland	24.246	37.928	3.610	13.682	3.610
Massachusetts	25.087	27.620	3.700	2.533	3.700
Michigan	37.172	39.026	4.613	1.854	4.613
Minnesota	29.362	41.236	9.009	11.874	9.009
Mississippi	57.544	59.956	8.670	2.412	8.670
Missouri	38.929	59.946	7.180	21.017	7.180
Montana	46.639	53.704	14.153	7.065	14.153
Nebraska	38.100	32.261	4.824	-5.839	4.824
Nevada	34.353	38.135	7.787	3.782	7.787
New Hampshire	20.531	30.094	4.184	9.563	4.184
New Jersey	22.446	31.036	2.461	8.590	2.461
New Mexico	53.995	54.170	8.942	0.175	8.942
New York	35.136	44.364	2.461	9.228	2.461
North Carolina	39.911	45.196	3.412	5.285	3.412
North Dakota	42.554	42.977	9.617	0.423	9.617
Ohio	37.048	39.171	3.114	2.123	3.114
Oldahoma	47.638	52.280	7.244	4.642	7.244
Oregon	39.879	44.718	7.123	4.839	7.123
Pennsylvania	33.428	33.162	2.952	-0.266	2.952
Rhode Island	29.823	38.819	6.903	8.99	6.903
South Carolina	43.847	52.130	5.999	8.283	5.999
South Dakota	47.214	40.561	8.148	-6.653	8.148
Tennessee	44.004	60.352	4.692	16.348	4.692
Tesas	45.835	51.141	4.981	5.306	4.981
Uteh	39.999	32.884	7.756	-7.115	7.756
Vermont	31.164	29.180	12.009	-1.984	12.009
Virginia	31.369	33.635	4.942	2.266	4.942
Washington	34.764	34.242	4.757	-0.522	4.757
Weat Virginia	51.603	60.589	9.573	8.98	9.573
Wisconsin	34.094	29.870	5.630	4.224	5.630
Wyoming	41.211	36.873	11.290	4.338	11.290
United States	37.789	43.580	0.795	5.791	0.795

TABLE A. 2
WIC POVERTY GUIDELINES FOR 1992
(Dollars)

State and Family Size	HHS Poverty Guidelines		WIC Poverty Guidelines1992
	1991	1992	
Alaska			
One-person family	8,290	8,500	8,395
Each extra person	2,820	2,980	2,900
Hawaii			
One-person family	7,610	7,830	7,720
Each extra person	2,600	2,740	2,670
Other States and DC			
One-person family	6,620	6,810	6,715
Each extra person	2,260	2,380	2,320

NOTE: The WIC poverty guidelines are simple arithmetic averages of the HHS poverty guidelines.
year. Therefore, eligibility workers determined a family's eligibility for WIC using the 1991 HHS poverty guidelines during the first six months of 1992 and the 1992 HHS poverty guidelines during the last six months of 1992. The Office of the Secretary, Department of Health and Human Services, is responsible for developing the HHS poverty guidelines. The HHS poverty guidelines are derived from the Census Bureau poverty thresholds (Fisher 1992).

We estimated standard errors for our sample estimates using the jackknife estimator proposed by Rao, Wu, and Yue (1992), treating CPS rotation groups as clusters. A rotation group, about oneeighth of a monthly CPS sample, consists of a group of households that begin the CPS at the same time. They are in the CPS for four months, rotate out for eight months, and rotate back in for four months, after which they are dropped from the CPS.

To obtain jackknife standard errors, we let Z_{i} equal the CPS sample estimate of the number of eligible infants and children in state $i(i=1,2, \ldots, 51)$ and $Z_{i, r}$, equal the contribution of rotation group $r(r=1,2, \ldots, 8)$ to that estimate. In other words:

$$
\begin{equation*}
Z_{i}=\sum_{r=1}^{8} Z_{i, r} \tag{1}
\end{equation*}
$$

If we were to exclude the observations in rotation group r, we could estimate the number of poor persons in state i by:

$$
\begin{equation*}
Z_{i(r)}=\frac{8}{7}\left(Z_{i}-Z_{i, r}\right) \tag{2}
\end{equation*}
$$

The " $(r)^{n}$ subscript indicates that rotation group r has been excluded. The factor $8 / 7$ enters the expression because when (approximately) $1 / 8$ of the sample is remcyed, an estimate from the remaining $7 / 8$ of the sample needs to be inflated to get an estimate for the whole. By excluding each of the eight rotation groups in turn, we can get eight alternative estimates for the number of poor
persons in state i. Then, we can assess the degree of sampling variability (estimate the variance of Z_{i}) by measuring the variability among the eight estimates according to:

$$
\begin{equation*}
\operatorname{var}\left(Z_{i}\right)=\frac{7}{8} \sum_{r=1}^{8}\left(Z_{i(r)}-Z_{i}\right)^{2} \tag{3}
\end{equation*}
$$

The factor $7 / 8$ enters this expression because the $Z_{i(r)}$ are obtained from samples that are only $7 / 8$ the size of the full CPS sample for state i and, hence, are expected to be more variable than Z_{i} (by a factor of $8 / 7$). If Y_{i} equals the CPS sample estimate of the percentage of infants and children eligible in state i :

$$
\begin{equation*}
Y_{i}=100 \frac{Z_{i}}{\bar{N}_{i}} \tag{4}
\end{equation*}
$$

where N_{i} is the CPS sample estimate of the population of infants and children in state i. We estimate the variance of Y_{i} by:

$$
\begin{equation*}
\operatorname{var}\left(Y_{i}\right)=100^{2} \frac{\operatorname{var}\left(Z_{i}\right)}{N_{i}^{2}} \tag{5}
\end{equation*}
$$

where $\operatorname{var}\left(Z_{i}\right)$ is calculated according to Equation (3). Our jacklnife estimate of the standard error of Y_{i} is obtained by taking the square root of $\operatorname{var}\left(\boldsymbol{Y}_{i}\right)$. Estimated jackknife standard errors for the CPS sample estimates for 1992 are presented in Table A.1.
3. Construct sample estimates of the change in the percentage eligible between 1989 and 1992. A state's sample estimate of the change between 1989 and 1992 in the percentage of infants and children who were income eligible was obtained by subtracting the census estimate for 1989 from the CPS estimate for 1992. Sample estimates of change and their standard errors are presented in Table
A.1. We assumed that the sampling error associated with a census estimate is negligible. Therefore, the standard errors for the estimates of change in the percentage eligible equal the standard errors for the 1992 estimates of the percentage eligible.
4. Using a regression model, predict the change in the percentage eligible for each state based on observed changes in (i) Food Stamp Program (FSP) participation, (ii) Unemployment Insurance (UI) Program participation, and (iii) per capita income.

Our "best" regression model has three predictors that measure the changes between 1989 and 1992 in:

- FSP participation
- UI Program participation
- Per capita income

These three predictors were selected from a list that included variables measuring the changes in:

- National School Lunch Program (NSLP) participation (number of students approved for free or reduced-price meals relative to the size of the school-age population--ages 5 through 17)
- Supplemental Security Income (SSI) Program participation (number of recipients relative to the size of the population)
- Aid to Families with Dependent Children (AFDC) Program participation (number of recipients relative to the size of the population)
- Head Start Program participation (enrollment relative to the size of the preschoolage population--ages 0 through 4)
- Chapter 1 (Compensatory Education) Program funding (basic grant, in dollars, relative to the size of the school-age population)
- Per capita residential construction (in dollars)
- Per capita nonresidential construction (in dollars)
- Crime rate
- Population density

We considered these variables because (1) we believed that they might indicate differences among states in the incidence of poverty (especially child poverty), socioeconomic conditions related to poverty, or the health of the state economy and (2) they could be measured uniformly across states for 1992 from nonsample or highly precise sample data. Variables measuring vital events (e.g., infant deaths), WIC participation, and Medicaid participation were rejected as potential predictors because they are often used as outcome measures in analyses of the effectiveness of the WIC Program. ${ }^{2}$

We selected our best regression model on the basis of its consistently strong relative performance in predicting changes in WIC eligibles for three time periods: 1989 to 1990,1989 to 1991, and 1989 to 1992 . We judged performance by examining numerous functions of the regression residuals, including $\mathrm{R}^{\mathbf{2}}$ as well as measures that adjust for the loss in degrees of freedom from adding predictor variables. ${ }^{3}$

Definitions and data sources for the three predictor variables in our best regression model are given in Table A.3. Tables A.4 and A. 5 provide the raw data for 1989 and 1992, respectively, used to calculate the predictor variables, and Table A. 6 displays the calculated predictor variables for each state.

Following the estimation procedure described in Step 5, we obtained the estimated regression equation shown below:

Change in percentage eligible $=-1.899$
$+1.617 \times$ Change in FSP participation
$+4.644 \times$ Change in UI Program participation
$-6.498 \times$ Change in per capita income

[^34]
BLANK

PAGE

TABLE A. 3
DEFINITIONS AND DATA SOURCES FOR PREDICTOR VARIABLES

Predictor Variable	Definition: Change between 1989 and 1992 in	Principal Data Sources ${ }^{\text {a }}$
FSP participation ${ }^{\text {b }}$	$100 \times \frac{\text { Number of participants during August }}{\text { Resident population }}$	FSP participation data are population counts of participants from state program operations data and were obtained electronically from the Food and Consumer Service, U.S. Department of Agriculture.
UI Program participation ${ }^{\text {e }}$	$100 \times \frac{\text { Number of first payment beneficiaries during year }}{\text { Resident population }}$	UI data for 1992 were obtained electronically from the Unemployment Insurance Service, U.S. Department of Labor. Data for 1989 are from Table 603, "State Unemployment Insurance, by State and Other Areas: 1989,* in U.S. Department of Commerce (1991a, p. 367).
Per capita income ${ }^{\text {d }}$	$\frac{\text { (Total personal income } \div \text { Resident population) }}{\text { WIC poverty guideline for one-person family }}$	Total personal income data are from Table 1 , Total and Per Capita Personal Income by State and Region, 1985-90," in U.S. Department of Commerce (1991b, p. 30) and Table 1, Total and Per Capita Personal Income by State and Region, 1987-92," in U.S. Department of Commerce (1993b, p. 74).

"Data on the resident population as of July 1 are from Table 26, "Resident Population-States and Puerto Rico: 1960 to 1990," in U.S. Department of Commerce (1991a, pp. 20-21) and Table 31, "Resident Population-States: 1970 to 1992," in U.S. Department of Commerce (1993a, pp. 28-29).
${ }^{6}$ Data for August are often used to measure FSP participation. See, for example, Schirm, Swearingen, and Hendricks (1992).
${ }^{\text {e }}$ A first payment beneficiary is a person receiving a UI payment for the first time in more than a year.
${ }^{4}$ We measure per capita income relative to the WIC poverty guideline for a one-person family to account for inflation. Poverty guidelines are adjusted annually based on the Consumer Price Index (CPI). The 1992 WIC poverty guidelines are displayed in Table A.2. The 1989 guidelines for a one-person family are $\mathbf{\$ 7 3 4 5}, \mathbf{\$ 6 7 6 0}$, and $\mathbf{\$ 5 8 7 5}$ for Alaska, Hawaii, and the rest of the U.S., respectively.

TABLE A. 4
1989 DATA FOR CALCULATING PREDICTOR VARIABLES

State	FSP Recipients in August	UI First Payment Beneficiaries	$\begin{gathered} \text { Total Personal } \\ \text { Income } \\ (\$ 1,000,000) \end{gathered}$	Resident Population on July 1 $(1,000)$
Alabama	428,280	152,000	56,698	4,118
Alaska	23,766	33,000	11,276	527
Arizona	276,862	74,000	55,652	3,556
Arkansas	226,262	83,000	31,290	2,406
California	1,827,414	1,024,000	576,489	29,063
Colorado	206,384	74,000	58,315	3,317
Connecticut	117,896	119,000	80,309	3,239
Delaware	30,286	22,000	12,693	673
District of Columbia	58,903	19,000	13,600	604
Florida	691,285	187,000	225,361	12,671
Georgia	486,762	210,000	104,107	6,436
Hawaii	79,135	19,000	20,417	1,112
Idaho	57,878	37,000	14,153	1,014
Illinois	973,376	303,000	220,389	11,658
Indiana	282,643	116,000	88,808	5,593
Iowa	163,210	73,000	44,856	2,840
Kansas	132,794	69,000	41,916	2,513
Kentucky	446,171	112,000	51,596	3,727
Louisiana	725,832	99,000	56,820	4,382
Maine	$\mathbf{8 4 , 1 8 5}$	44,000	20,081	1,222
Maryland	248,688	89,000	98,231	4,694
Massachusetts	319,841	261,000	131,403	5,913
Michigan	875,425	393,000	163,269	9,273
Minnesota	248,854	123,000	77,334	4,353
Mississippi	483,489	72,000	31,089	2,621
Missouri	402,392	161,000	85,163	5,159
Montana	52,813	22,000	11,548	806
Nebraska	91,587	27,000	25,772	1,611
Nevada	44,504	36,000	20,919	1,111
New Hampshire	23,222	32,000	22,546	1,107
New Jersey	357,935	268,000	182,882	7,736
New Mexico	150,328	28,000	20,240	1,528
New York	1,409,738	544,000	374,692	17,950
North Carolina	381,299	211,000	101,440	6,571
North Dakota	37,536	15,000	9,047	660
Ohio	1,072,680	305,000	180,197	10,907
Oldahoma	253,921	50,000	45,691	3,224
Oregon	208,695	106,000	45,409	2820
Pennsyivania	901,156	406,000	209,200	12,040
Rhode Island	57,680	46,000	18,092	998
South Carolina	249,251	97,000	48,344	3,512
South Dakota	48,600	8,000	10,022	715
Tennessee	500,159	164,000	72,912	4,940
Texas	1,681,021	340,000	263,558	16,991
Utah	93,793	31,000	22,287	1,707
Vermont	34,092	19,000	9,434	567
Virginia	325,167	131,000	115,546	6,098
Weahington	319,547	169,000	84,408	4,761
Weat Virginia	257,470	53,000	23,041	1.857
Wirconsin	280,511	172,000	80,979	4.867
Wyoming	26,219	10,000	6,844	475

TABLE AS
1992 DATA FOR CALCULATING PREDICTOR VARIABLES

State	FSP Recipients in August	UI First Payment Beneficiaries	$\begin{gathered} \text { Total Personal } \\ \text { Income } \\ (\$ 1,000,000) \\ \hline \end{gathered}$	$\begin{gathered} \text { Resident Population } \\ \text { on July } 1 \\ (1,000) \\ \hline \end{gathered}$
Alabama	555,232	157,084	68,221	4,136
Alaska	40,477	44,094	13,157	587
Arizona	475,882	90,486	66,386	3,832
Arkansas	278,876	99,922	37,817	2,399
California	2,658,540	1,443,782	662,786	30,867
Colorado	264,118	79,360	71,654	3,470
Connecticut	207,380	157,319	89,036	3,281
Delaware	54,360	28,787	15,301	689
District of Columbia	86,135	26,831	15,590	589
Fiorida	1,398,057	339,288	262,929	13,488
Georgia	777,194	231,957	124,803	6,751
Hawaii	95,484	39,381	25,255	1,160
Idaho	71,221	46,156	17,634	1,067
Illinois	1,158,311	390,904	255,651	11,631
Indiana	464,594	149,845	104,204	5,662
Iowa	191,727	88,604	52,103	2,812
Kansas	179,183	70,823	48,807	2,523
Kentucky	527,608	127,034	63,261	3,755
Louisiana	773,535	109,968	68,055	4,287
Maine	133,530	58,640	22,360	1,235
Maryland	355,947	144,626	114,115	4,908
Massachusetts	430,034	249,341	142,828	5,998
Michigan	1,002,451	487,246	185,713	9,437
Minnesota	317,232	133,506	91,512	4,480
Mississippi	540,061	79,145	36,936	2.614
Missouri	558,861	184,467	98,963	5,193
Montana	66,965	25,147	13,397	824
Nebraska	109,253	33,436	30,438	1,606
Nevada	83,417	60,268	28,254	1,327
New Hampshire	57,302	39,915	25,100	1,111
New Jersey	510,070	339,837	210,059	7,789
New Mexico	233,234	31,702	24,009	1,581
New York	1,921,686	673,398	432,001	18,119
North Carolina	608,734	243,700	123,074	6,843
North Dekota	47,224	14,936	10,934	636
Ohio	1,247,751	357,397	207,769	11,016
Oklahoma	352,129	65,969	52,847	3,212
Oregon	258,457	141,756	54,840	2,977
Pennsyivania	1,157,341	517,810	244,814	12,009
Rhode Island	88,795	60,746	19,996	1,005
South Carolina	380,609	125,030	58,362	3,603
South Dakota	55,000	8,868	12,147	711
Tennessee	725,074	189,667	88,584	5,024
Texas	2,505,165	429,726	323,687	17,656
Utah	122,958	37,685	28,328	1,813
Vermont	53,626	26,477	10,732	570
Virginia	518,297	137,598	135,003	6,377
Washington	439,451	219,217	108,301	5,136
West Virginia	310,970	60,922	27,784	1,812
Wisconsin	339,986	215,669	95,936	5,007
Wyoming	33,517	12,222	8,545	466

TABLE A. 6
VALUES FOR PREDICTOR VARIABLES IN REGRESSION MODEL

State	Change Between 1989 and 1992 in		
	FSP Participation	UI Participation	Per Capita Income
Alabama	3.024	0.107	0.112
Alaska	2.386	1.250	-0.243
Arizona	4.633	0.280	-0.084
Arkansas	2.221	0.715	0.134
California	2.325	1.154	-0.178
Colorado	1.389	0.056	0.083
Connecticut	2.681	1.121	-0.179
Delaware	3.390	0.909	0.097
District of Columbia	4.872	1.409	0.109
Florida	4.909	1.039	-0.124
Georgia	3.949	0.173	0.000
Hawaii	1.115	1.686	0.104
Idaho	0.967	0.677	0.085
Illinois	1.610	0.762	0.055
Indiana	3.151	0.573	0.038
Iowa	1.071	0.581	0.071
Kansas	1.818	0.061	0.042
Kentucky	2.080	0.378	0.153
Louisiana	1.480	0.306	0.157
Maine	3.923	1.147	-0.101
Maryland	1.954	1.051	-0.099
Massachusetts	1.761	-0.257	-0.237
Michigan	1.182	0.925	-0.066
Minnesota	1.364	0.154	0.018
Mississippi	2.213	0.281	0.085
Missouri	2.962	0.431	0.028
Montana	1.575	0.322	-0.018
Nebraska	1.118	0.406	0.099
Nevada	2.280	1.302	-0.034
New Hampshire	3.060	0.702	-0.103
New Jersey	1.922	0.899	-0.008
New Mexico	4.914	0.173	0.063
New York	2.752	0.686	-0.002
North Carolina	3.093	0.350	0.050
North Dakota	1.738	0.075	0.227
Ohio	1.492	0.448	-0.003
Oklahoma	3.087	0.503	0.038
Oregon	1.281	1.003	0.002
Pennsylvania	2.152	0.940	0.078
Rhode Island	3.055	1.435	-0.123
South Carolina	3.467	0.708	0.069
South Dakota	0.939	0.128	0.158
Tennessee	4.307	0.455	0.114
Texas	4.295	0.433	0.090
Utah	1.287	0.263	0.105
Vermont	3.395	1.294	-0.028
Virginia	2.796	0.010	-0.072
Washington	1.844	0.718	0.122
West Virginia	3.297	0.508	0.171
Wisconsin	1.026	0.773	0.021
Wyoming	1.672	0.518	0.279

As expected, the signs of the regression coefficients imply that, all else equal, states with (1) larger increases in FSP participation, (2) larger increases in UI Program participation, or (3) larger decreases in per capita income tend to have larger increases in the percentage of infants and children eligible for WIC. ${ }^{4}$ Table A. 7 presents regression estimates and their standard errors for each state. ${ }^{5}$

5. Using "shrinkage" methods, average the sample estimates of change and the predictions of change.

We have used a shrinkage estimator based on the Empirical Bayes estimator proposed by DuMouchel and Harris (1983). Their estimator was used by Ericksen and Kadane (1985) to estimate population undercounts in the 1980 census for 66 areas covering the entire U.S. and by Schirm, Swearingen, and Hendricks (1992) to estimate state poverty rates and FSP participation rates.

The Empirical Bayes shrinkage estimator proposed by DuMouchel and Harris (1983) is:

$$
\begin{equation*}
Y_{c, E B}=\left[D+\frac{1}{u^{2}} M\right]^{-1} D Y_{s}, \tag{6}
\end{equation*}
$$

where $Y_{c, E B}$ is a (51×1) vector of Empirical Bayes shrinkage estimates, and Y_{s} is a (51×1) vector of direct sample estimates. D is a (51×51) diagonal matrix with diagonal element (i, i) equal to one divided by the variance (standard error squared) of the direct sample estimate for state $i .{ }^{6} M=I$ $-X\left(X^{\prime} X\right)^{-1} X^{\prime}$, where I is a (51×51) identity matrix and X is a $(51 \times K)$ matrix containing data for

[^35]TABLE A. 7
CHANGES BETWEEN 1989 AND 1992 IN PERCENTAGES OF INFANTS AND CHILDREN INCOME ELIGBLE: REGRESSION ESTIMATES

State	Estimate	Standard Error
Alabama	2.760	2.627
Alacka	9.343	2868
Arizona	7.439	2.888
Arknesas	4.142	2.478
Celifornia	8.377	2.618
Colorado	0.068	2.649
Connecticut	8.805	2589
Delaware	7.174	2.573
District of Columbia	11.814	3.450
Fiorida	11.670	2898
Georgia	5.290	2.685
Hewaii	7.058	3.350
Idaho	2.256	2.525
Illinois	3.886	2362
Indianas	5.611	2.337
Iowa	2.070	2.476
Kansas	1.051	2.575
Kentucky	2226	2.531
Louisiana	0.895	2.607
Maine	10.428	2.607
Maryland	6.785	2.437
Massachusetts	1.295	3.693
Michigan	4.737	2.505
Minnesota	0.905	2.577
Mississippi	2.432	2.421
Missouri	4.710	2.336
Montana	2.260	2.450
Nebraska	1.151	2.527
Nevada	8.055	2.540
New Hampshire	6.979	2.362
New Jersey	5.436	2.314
New Mexico	6.441	3.072
New York	5.750	2.254
North Carolina	4.403	2.406
North Dakota	- 0.215	2.891
Ohio	2.614	2.390
Oldahoma	5.182	2.339
Oregon	4.817	2.477
Pennsyivania	5.439	2.422
Rhode Island	10.505	2.702
		2454
South Dakota	-0.813	2.785
Tennessee	6.438	2822
Textes	6.472	2.765
Utah	0.721	2.554
Vermont	9.782	2.607
Virginia	3.137	2728
Washington	3.625	2.459
Weat Virginia	4.681	2.699
Wisconsio	3.213	2.468
Wyoming	1.397	3.028
United States	5.503	0.899

each state on a set of $k=K-1$ symptomatic indicators. (The other column of X consists of all ones and allows for an intercept in the regression model. $)^{7} u^{2}$, a scalar reflecting the lack of fit of the regression model, is estimated by maximizing the likelihood function:

$$
\begin{equation*}
L=|W|^{1 / 2}\left|X^{\prime} W X\right|^{-1 / 2} \exp \left[-\frac{1}{2} Y_{s}^{\prime} S Y_{s}\right] \tag{7}
\end{equation*}
$$

where $W=\left(D^{-1}+u^{2} I\right)^{-1}$ and $S=W-W X\left(X^{\prime} W X\right)^{-1} X^{\prime} W$. The variance-covariance matrix of the Empirical Bayes shrinkage estimator is:

$$
\begin{equation*}
V_{c, E B}=\left[D+\frac{1}{u^{2}} M\right]^{-1} \tag{8}
\end{equation*}
$$

This estimator treats the maximum likelihood estimate of u^{2}, once it is calculated, as known. We have taken a more fully Bayesian approach, treating u^{2} as estimated.

If we specify flat prior distributions for both B-the $(K \times 1)$ vector of regression coefficients--and u, that is, distributions proportional to one, the posterior density of u, evaluated at u_{j}, is proportional to:

$$
\begin{equation*}
p_{j}^{*}=\left|W_{j}\right|^{1 / 2}\left|X^{\prime} W_{j} X\right|^{-1 / 2} \exp \left[-\frac{1}{2}\left(Y_{s}-X \hat{B}_{j}\right)^{\prime} W_{j}\left(Y_{s}-X \hat{B}_{j}\right)\right], \tag{9}
\end{equation*}
$$

where $W_{j}=\left(D^{-1}+u_{j}^{2} I\right)^{-1}$ and $B_{j}=\left(X^{\prime} W_{j} X\right)^{-1} X^{\prime} W_{j} Y_{s}$. Under this formulation treating u as unknown but following a particular distribution, there is no closed-form expression for our shrinkage estimator. Instead, we must numerically integrate over u.

[^36]To perform the numerical integration, we selected a grid of 701 equally spaced values of u, starting with 0.00 and incrementing by 0.01 . For each value $u_{j}=0.00,0.01, \ldots, 7.00$ of u, we calculated a vector of shrinkage estimates:

$$
\begin{equation*}
Y_{c, j}=\left[D+\frac{1}{u_{j}^{2}} M\right]^{-1} D Y_{s} \tag{10}
\end{equation*}
$$

and a variance-covariance matrix:

$$
\begin{equation*}
V_{c, j}=\left[D+\frac{1}{u_{j}^{2}} M\right]^{-1} \tag{11}
\end{equation*}
$$

These expressions for the shrinkage estimates and the variance-covariance matrix are the same as when u is treated as known. ${ }^{8}$ For each u_{j}, we also calculated p_{j}^{*} according to Equation (9). After calculating $Y_{c, j}, V_{c, j}$, and $p_{j}^{*} 701$ times (once for each value of u_{j}), we calculated the probability of u_{j} :

$$
\begin{equation*}
p_{j}=\frac{p_{j}^{*}}{\sum_{j=1}^{701} p_{j}^{*}}, \tag{12}
\end{equation*}
$$

which is also an estimate of the probability that the shrinkage estimates $Y_{c, j}$ are the true values. As Equation (12) suggests, the p_{j} are obtained by normalizing the p_{j}^{*} to sum to one. ${ }^{9}$
${ }^{8}$ For $u_{j}=0$, we set $Y_{c, j}=X\left(X^{\prime} D X\right)^{-1} X^{\prime} D Y_{s}$ and $V_{c, j}=X\left(X^{\prime} D X\right)^{-1} X^{\prime}$, the limiting values derived by DuMouchel and Harris (1983).

The p_{j} should approach 0 as u_{j} approaches the upper limit of the grid over which we integrate. If that does not occur, the grid should be extended, and the calculations repeated.

To complete the numerical integration over u and obtain a single set of shrinkage estimates, we calculated a weighted sum of the 701 sets of shrinkage estimates, weighting each set $Y_{c j}$ by its associated probability $\boldsymbol{p}_{\boldsymbol{j}}$. Thus, our shrinkage estimates are:

$$
\begin{equation*}
Y_{c}=\sum_{j=1}^{701} p_{j} Y_{c, j} \tag{13}
\end{equation*}
$$

The variance-covariance matrix is:

$$
\begin{equation*}
V_{c}=\sum_{j=1}^{701} p_{j} V_{c, j}+\sum_{j=1}^{701} p_{j}\left(Y_{c, j}-Y_{c}\right)\left(Y_{c, j}-Y_{c}\right)^{\prime} \tag{14}
\end{equation*}
$$

The first term on the right side of this expression reflects the error from sampling variability and the lack of fit of the regression model. The second term captures how the shrinkage estimates vary as our estimate of u varies. Thus, the second term accounts for the variability from not being able to estimate u very well. Our shrinkage estimates and their standard errors are displayed in Table A. $8 .{ }^{10}$

Our regression estimates, which were presented in the previous step, were similarly obtained. They are:

$$
\begin{equation*}
Y_{r}=\sum_{j=1}^{701} p_{j} Y_{r, j} \tag{15}
\end{equation*}
$$

where $Y_{r, j}=X \hat{B}_{j}$ is the vector of regression estimates obtained when $u=u_{j}$. The variancecovariance matrix is:

[^37]TABLE A. 8
CHANGES BETWEEN 1989 AND 1992 IN PERCENTAGES OF INFANTS AND CHILDREN INCOME ELIGIBLE: SHRINKAGE ESTIMATES

State	Estimate	Standard Error
Alabema	2506	2.484
Alaska	8.238	2.724
Arizona	6.336	2.724
Arkanses	3.977	2.302
California	8.619	1.403
Colorado	0.133	2.407
Connecticut	9.044	2.445
Delaware	6.788	2.308
District of Columbia	12.032	3.372
Florida	10.907	1.965
Georgia	4.785	2.474
Hawaii	7325	3.006
Idaho	2.020	2.249
Illinois	4.638	1.936
Indiana	6.221	2.157
Iowa	2.634	1.877
Kansas	0.620	2310
Kentucky	2.409	2381
Louisiana	0.977	2510
Maine	10.510	2.512
Maryland	8.268	2.161
Massachusetts	1.596	2891
Michigan	4.331	2.165
Minnesota	1.454	2.460
Mississippi	2.436	2.284
Missouri	5.911	2.417
Montana	2.366	2.388
	0.191	2361
Nevada	7.788	2.384
New Hampshire	7.436	1.959
New Jersey		
New Mexico	6.123	2.907
New York	6.917	1.684
North Caroline	4.608	1.859
North Dakota	-0.184	2.750
Ohio	2.522	1.783
Oldahoma	5.145	2.161
Oregon	4.830	2278
Pennsylvania	3.904	2.114
Rhode Island	10.390	2.469
South Carolina	6.717	2.203
South Dakota	-1.148	2.643
Tennemee	7.873	2.725
Texas	6.306	2375
Utah	0.227	2.451
Vermont	9.442	2.545
Virginia	3.033	2.347
Washington	3.041	2.169
West Virginia	4.868	2579
Wiscossin	2.413	2.347
Wyoming	1.212	2.925
United States	5.590	0.683

$$
\begin{equation*}
V_{r}=\sum_{j=1}^{701} p_{j} V_{r, j}+\sum_{j=1}^{701} p_{j}\left(Y_{r, j}-Y_{r}\right)\left(Y_{r, j}-Y_{r}\right)^{\prime} \tag{16}
\end{equation*}
$$

where $\quad V_{r, j}=X\left(X^{\prime} W_{j} X\right)^{-1} X^{\prime}+u_{j}^{2} I$. We can estimate the regression coefficient vector by:

$$
\begin{equation*}
B=\sum_{j=1}^{701} p_{j} \hat{B}_{j} . \tag{17}
\end{equation*}
$$

Estimated values for the regression coefficients were displayed in the previous step.
6. Add the shrinkage estimate of the change between 1989 and 1992 to the census estimate of the percentage eligible in 1989 to get a shrinkage estimate of the percentage eligible in 1992.

To facilitate a comparison of the alternative estimates, we have displayed in Table A. 9 not only shrinkage estimates but also sample and regression estimates of the percentage eligible in 1992. These estimates were obtained by adding the census estimates for 1989 from Step 1 to the estimates of change derived in Steps 3, 4, and 5. The estimates of change were displayed together in Chapter II, Table II. 2 The sample estimates in Table A. 9 are, of course, equal to the sample estimates obtained in Step 2 because we have just added and then subtracted the census estimates.
7. Multiply the shrinkage estimate of the percentage eligible by the state population of infants and the state population of children to get preliminary shrinkage estimates of the numbers of eligible infants and children.

As we stated in Chapter II, we assumed in this step that the percentage of infants who were income eligible equals the percentage of children who were income eligible. Census estimates show that this assumption is reasonable. Nationwide, 37.982 percent of infants and 37.739 percent of children were income eligible in 1989.

TABLE A. 9
PERCENTAGES OF INFANTS AND CHILDREN INCOME EUGIBLE IN 1992

State	Sample Estimate	Regression Estimate	Shrinkage Estimate
Alabama	44.476	49.062	48.808
Alaska	41.355	50.710	49.605
Arizona	42.802	32.913	51.810
Arkanses	53.929	56.348	56.183
California	46.573	46.137	46.379
Colorado	36.754	36.125	36.190
Connecticut	34.766	30.005	30.244
Delaware	32.065	35.717	35.331
District of Columbia	67.187	58.055	58.273
Florida	49.457	51.691	50.928
Georgia	40.193	45.905	45.400
Hawaii	46.620	43.879	44.146
Idaho	46.822	49.064	48.828
Ilinois	40.696	37.069	37.821
Indiana	47.088	41.081	41.691
Iowa	41.081	38.916	39.480
Kansas	34.028	37.811	37.380
Kentucky	53.568	50.349	50.532
Louisiana	55.899	53.546	53.628
Maine	47.455	44.956	45.038
Maryland	37.928	31.031	32.514
Massachusetts	27.620	26.382	26.683
Michigan	39.026	41.909	41.503
Minnesota	41.236	30.267	30.816
Mississippi	59.956	59.976	59.980
Missouri	59.946	43.639	44.840
Montana	53.704	48.899	49.005
Nebraska	32.261	39.251	38.291
Nevada	38.135	42.408	42.141
New Hampshire	30.094	27.510	27.967
New Jersey	31.036	27.882	28.955
New Mexico	54.170	60.436	60.118
New York	44.364	40.886	42.053
North Carolina	45.196	44.314	44.519
North Dakota	42.977	42.339	42.370
Ohio	39.171	39.662	39.570
Okdahoma	52.280	52.820	52.783
Oregon	44.718	44.696	44.709
Pennsyivania	33.162	38.867	37.332
Rhode Island	38.819	40.328	40.213
South Carolina	52.130	50.394	50.564
South Dakota	40.561	46.401	46.066
Tennessee	60.352	50.442	51.877
Texas	51.141	52.307	52.141
Utab	32.884	40.720	40.226
Vermont	29.180	40.946	40.606
Virginia	33.635	34.506	34.402
Washington	34.242	38.389	37.805
Went Virginia	60.589	56.284	56.471
Wisconsin	29.870	37.307	36.507
Wyoming	36.873	42.608	42.423
United States	43.580	43.292	43.379

The independent population estimates used in this step and displayed in Chapter II, Table II. 4 were obtained electronically from the U.S. Bureau of the Census. The release date for the estimates was March 15, 1994.
8. Control the preliminary state shrinkage estimates of the numbers of eligible infants and children to sum to the national totals for eligible infants and children obtained from the CPS.

In Chapter III, we presented approximate 90 -percent confidence intervals for our final shrinkage estimates. The upper and lower bounds of the confidence intervals were calculated according to:

Upper Bound ${ }_{i}=E_{c i}+1.645 e_{c i}$
and

Lower Bound $_{i}=E_{c i}-1.645 e_{c i}$,
where $E_{c i}$ is the final shrinkage estimate (for infants or children) for state i and $e_{c i}$ is the standard error of that estimate. That standard error is:

$$
\begin{equation*}
e_{c i}=r_{c} N_{f i} \frac{\sqrt{V_{c}(i i)}}{100}, \tag{20}
\end{equation*}
$$

where r_{c} equals $1,717,743 \div 1,737,837$ (for infants) or $6,925,815 \div 6,721,734$ (for children), $N_{f i}$ is the independent population estimate of either infants or children in state i, and $V_{c}(i i)$ is the (i, i) diagonal element of V_{c}, which was calculated according to Equation (14). In other words, the square root of V_{c} (ii) is the standard error of the shrinkage estimate of the percentage of infants and children eligible
in state i in 1992. ${ }^{11}$ We can find values for $E_{c i}, N_{f i}$, and the square root of $V_{c}(i i)$ in Tables III.1. II.4, and A.8, respectively.

In addition to presenting the confidence intervals for our shrinkage estimates in Chapter III. we discussed the relative precision of sample and shrinkage estimates. To inform that discussion, we derived "final" sample estimates in the same way as we derived our final shrinkage estimates. ${ }^{12}$ Both sets of final estimates appear in Table A.10. In Tables A.11 and A.12, we present confidence intervals for sample and shrinkage estimates of eligible infants and children, respectively. We calculated bounds for confidence intervals of sample estimates according to Equations (18) and (19), raplacing shrinkage estimates by sample estimates. The standard error for a sample estimate is given by:

$$
\begin{equation*}
e_{s i}=r_{s} N_{l i} \frac{\sqrt{1 / D(i i)}}{100}, \tag{21}
\end{equation*}
$$

where r_{s} equals $1,717,743 \div 1,746,319$ (for infants) or $6,925,815 \div 6,754,737$ (for children), and the square root of $1 / D(i i)$ is in the third column of numbers in Table A.1.

[^38]TABLE A. 10

SAMPLE AND SHRINKAGE ESTIMATES OF THE NUMBERS OF INFANTS AND CHILDREN INCOME ELIGIBLE IN 1992

State	"Final" Sample Estimates		Final Shrinkage Estimates	
	Infants	Children	Infants	Children
Alabama	26,984	107,747	29,757	118,822
Alaska	4,683	19,504	5,645	23,510
Arizona	27,750	111,571	33,754	135,715
Arkansas	18,278	75,149	19,135	78,674
California	271,312	1,035,854	271,501	1,036,604
Colorado	19,374	79,004	19,170	78,174
Connecticut	15,929	67,388	13,925	58,911
Delaware	3,397	13,630	3,761	15,092
District of Columbia	5,499	21,829	4,793	19,026
Florida	92,634	381,175	95,855	394,439
Georgia	43,183	174,232	49,016	197,770
Hawaii	8,992	34,369	8,556	32,705
Idaho	7,861	32,188	8,238	33,732
Illinois	75,371	297,525	70,389	277,864
Indiana	38,129	156,313	33,924	139,077
Iowa	15,251	65,464	14,729	63,222
Kansas	12,316	52,495	13,596	57,949
Kentucky	27,874	113,262	26,423	107,367
Louisiana	38,685	154,766	37,294	149,207
Maine	7,280	32,458	6,942	30,956
Maryland	28,291	117,770	24,371	101,455
Massachusetts	23,429	96,568	22,745	93,750
Michigan	53,243	230,319	56,899	246,140
Minnesota	26,266	114,025	19,725	85,630
Mississippi	25,055	98,836	25,188	99,361
Missouri	44,002	185,288	33,074	139,277
Montana	6,005	25,730	5,506	23,594
Nebraska	7,246	31,700	8,642	37,810
Nevada :	8,223	33,072	9,131	36,725
New Hampshire	4,584	20,444	4,281	19,092
New Jersey	36,016	145,098	33,765	136,034
New Mexico	14,821	58,849	16,529	65,632
New York	122,851	491,253	117,020	467,950
North Carolina	44,985	182,485	44,528	180,635
North Dakota	3,687	15,909	3,653	15,761
Ohio	63,347	254,736	64,304	258,595
Oklahoma	24,324	99,567	24,678	101,019
Oregon	18,157	77,819	18,242	78,185
Pennsylvania	52.950	220,867	59,899	249,861
Rhode Island	5,567	22,428	5,795	23,347
South Carolina	28,567	116,175	27,844	113,239
South Dakota	4,400	18,239	5,022	20,817
Tennessee	43,294	173,919	37,396	150,230
Texas	159,840	620,788	163,761	636,034
Utah	11,810	47,704	14,518	58,641
Vermont	2,162	9,684	3,023	13,542
Virginia	31,618	128,169	32,497	131,735
Washington	26,389	109,746	29,277	121,761
West Virginia	13,026	53,670	12,200	50,268
Wisconsin	20,366	88,591	25,013	108.807
Wyoming	2,437	10,445	2817	12,076
United States	1,717,740	6,925,816	1,717,746	6,925,819

TABLE A. 11
APPROXIMATE 90-PERCENT CONFIDENCE INTERVALS FOR ESTIMATES OF NUMBERS OF ELIGIBLE INFANTS

State	Sample Estimates		Shrinkage Estimates	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Alabama	18,579	35,389	27,266	32,248
Alaska	3,690	5,676	5,135	6,155
Arizona	21,700	33,800	30,835	36,673
Arkansas	14,149	22,407	17,845	20,425
California	255,145	287,479	257,990	285,012
Colorado	13,624	25,124	17,073	21,267
Connecticut	9,116	22,742	12,073	15,777
Delaware	2,384	4,410	3,357	4,165
District of Columbia	3,728	7,270	4,337	5,249
Florida	85,098	100,170	89,771	101,939
Georgia	31,796	54,570	44,622	53,410
Hawaii	7,029	10,955	7,598	9,514
Idaho	6,329	9,393	7,614	8,862
Illinois	63,989	86,753	64,462	76,316
Indiana	30,238	46,020	31,037	36,811
Iowa	13,292	17,210	13,577	15,881
Kansas	9,107	15,525	12,214	14,978
Kentucky	20,683	35,065	24,375	28,471
Louisiana	26,006	51,364	34,423	40,165
Maine	4,450	10,110	6,305	7,579
Maryland	23,861	32,721	21,706	27,036
Massachusetts	18,266	28,592	18,691	26,799
Michigan	42,890	63,596	52,016	61,782
Minnesota	16,826	35,706	17,135	22,315
Mississippi	19,095	31,015	23,610	26,766
Missouri	35,332	52,672	30,141	36,007
Montana	3,402	8,608	5,065	5,947
Nebraska	5,464	9,028	7,765	9,519
Nevada	5,461	10,985	8,281	9,981
New Hampshire	3,536	5,632	3,788	4,774
New Jersey	31,318	40,714	30,561	36,969
New Mexico	10,796	18,846	15,214	17,844
New York	111,641	134,061	109,312	124,728
North Carolina	39,398	50,572	41,469	47,587
North Dakota	2,330	5,044	3,263	4,043
Ohio	55,063	71,631	59,538	69,070
Oldahoma	18,780	29,868	23,016	26,340
Oregon	13,399	22,915	16,713	19,771
Pennsyivania	45,196	60,704	54,319	65,479
Rhode Island	3,939	7,195	5,210	6,380
South Carolina	23,159	33,975	25,848	29,840
South Dakota	2,946	5,854	4,548	5,496
Tennessee	37,757	48,831	34,165	40,627
Texs	134,231	185,449	151,491	176,031
Utah	7,228	16,392	13,063	15,973
Vermont	698	3,626	2,711	3,335
Virginia	23,976	39,260	28.850	36,144
Washington	20,358	32,420	26,514	32,040
West Virginia	9,641	16,411	11,283	13,117
Wisconsin	14,051	26,681	22,368	27,658
Wyoming	1,210	3,664	2,497	3,137

TABLE A. 12

APPROXIMATE 90-PERCENT CONFIDENCE INTERVALS FOR ESTIMATES OF NUMBERS OF ELIGIBLE CHILDREN

State	Sample Estimates		Shrinkage Estimates	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
Alabama	74,184	141,310	108,874	128,770
Alaska	15,369	23,639	21,386	25,634
Arizona	87,245	135,897	123,977	147,453
Arkanses	58,175	92,123	73,371	83,977
California	974,131	1,097,577	985,020	1,088,188
Colorado	55,557	102,451	69,621	86,727
Connecticut	38,563	96,213	51,077	66,745
Delaware	9,565	17,695	13,470	16,714
District of Columbia	14,799	28,859	17,215	20,837
Florida	350,164	412,186	369,404	419,474
Georgia	128,288	220,176	180,042	215,498
Hewaii	26,866	41,872	29,042	36,368
Idaho	25,914	38,462	31,176	36,288
Illinois	252,594	342,456	254,466	301,262
Indiana	123,964	188,662	127,240	150,914
Iowa	57,057	73,871	58,278	68,166
Kansas	38,819	66,171	52,058	63,840
Kentucky	84,042	142,482	99,045	115,689
Louisiana	104,043	205,489	137,719	160,695
Maine	19,840	45,076	28,116	33,796
Maryland	99,331	136,209	90,363	112,547
Massachusetts	75,288	117,848	77,041	110,459
Michigan	185,535	275,103	225,018	267,262
Minnesota	73,046	155,004	74,385	96,875
Mississippi	75,325	122,347	93,137	105,585
Missouri	145,781	221,795	126,927	151,627
Montana	14,575	36,885	21,703	25,485
Nebraska	23,903	39,497	33,975	41,645
Nevada	21,963	44,181	33,307	40,143
New Hampshire	15,768	25,120	16,892	21,292
New Jersey	126,171	164,025	123,128	148,940
New Mexico	42,869	74,829	60,411	70,853
New York	446,425	536,081	437,125	498,775
North Carolina	159,823	205,147	168,227	193,043
North Dakota	10,053	21,765	14,078	17,444
Ohio	221,423	288,049	239,427	277,763
Otlahoma	76,872	122,262	94,216	107,822
Oregon	57,428	98,210	71,632	84,738
Pennsyivania	188,525	253,209	226,586	273,136
Rhode Island	15,867	28,989	20,989	25,705
South Carolina	94,183	138,167	105,123	121,355
South Dakota	12,212	24,266	18,852	22,782
Tennessee	151,677	196,161	137,249	163,211
Terses	521,326	720,250	588,377	683,691
Utah	29,195	66,213	52,763	64,519
Vermont	3,128	16,240	12,146	14,938
Virginia	97,190	159,148	116,951	146,519
Washington	84,666	134,826	110,269	133,253
West Virginia	39,721	67,619	46,492	54,044
Wisconsin	61,123	116,059	97,300	120,314
Wyoming	5,184	15,706	10,706	13,446

[^0]: 1 FNS had previously examined the sodium and fat content of school menls using data from the National Evaluation of Schnol Nutrition Programs (NESNP), which was completed in 1980 (Friker 1988). The analysis used data on students' dietury intake over a 24 -hour period and compared NSLP participants with students who alipped lunch and students who ate alternative lunches.

[^1]: 2 The CN Reauthorization Act of 1998 (P.L. 105-336) waived the weighted analysis requirement through September 2003 for school districts that obtain a waiver from their State agency.

[^2]: 3 To obtain a reasonable assessment of nutrient content, it is necessary to examine meals offered over a period of time rather than a single meal. The National Research Council (NRC) recommends that group feeding programs plan menus so that nutrient standards are met over a five- to 10 -day period. A sample five-day period, equivalent to a full week in most school districts, is routinely used in USDA-sponsored evaluations of Child Nutrition programs. SMI requirements specify that analyses be based on a typical school week, ranging from three to seven days.

[^3]: 4 In SNDA-I approximately 40 percent of participating schools provided information through a mail survey. Data for the remaining 60 percent of schools were collected by field staff using the same forms used in the mail survey.

[^4]: 7 Program regulations define alightly different grade groups for the traditional food-based menu planning system (K-3 and 412), besed on the groupings used in that sytem's meal pattern. However, schools are permitted to use the nutrition standerds defined for grades K-6 and 7-12.

[^5]: 1 A small number of SFA directors were able to definitively answer no to the question about use of a percentage markup, but were not sure about use of an actual pricing method.

 2 Under a special assistance certification and reimbursement provision (provision 2) (7CFR245.9), schools serve meals free of charge to all students provided that non-Federal resources are used to cover the difference between the cost of meals served and the Federal reimbursement earned. Schools operating under this provision are not required to certify students for meal benefits for up to three years after an initial assessment and claim reimbursement based on approved claiming percentages.

[^6]: Notes: Date based on schools that reported serving reduced-price or paid lunches (eome schools served only free lunches) and provided information on meal prices.
 Two percent of schools served funches free of charge to students who were approved for redveed-price meal benefits. Leas than one percent of schools served lunches free of charge to all students. Such meals were reported as reducedprice or full-price, in keeping with program regulations, but the price charged to students was reported as zero.

[^7]: 4 Under a special astistance certification and reimbursement provision (provision 2) (7CFR245.9), schools serve meals froe of charge to all students provided that non-Federal resources are used to cover the difference between the cost of meals served and the Federal reimbursement earned. Schools operating under this provision are not required to certify students for meal benefits for up to three years after an initial assessment and claim reimbursement based on approved claiming percentages.

 5 When zeros are excluded from calculation of average prices, means are roughly $\$ 0.01$ higher.

[^8]: Source: Weighted tabulations of data from a telephone interview with public SFA directors (participetion rates) and a mail survey of public school cafeteria managers (meal prices), Fall 1998 -Spring 1999. Exhibit includes only schools that sppeared in both deta sets.

[^9]: 6 Under a appcinl astistance certification and reimbursement provision (provision 2) (7CFR245.9), schools may eloct to serve ments friee of charge to all students provided that non-Fideral meources are used to cover the cost of meals served to ineligible children. Schools operating under this provision are not required to certify studenta for meal benefits for up to three years after an initiol assessment and claim reimbursement besod on approved chiming percentages.

[^10]: 7 Because another USDA-sponsored study was collecting deta on SMM implementation at the time the SNDA-II deta were being collected, SNDA-II instruments did not include detriled questions about the process of NSMP/ANSMP implementation.

[^11]: 1 Bese sample includes only schools where the respondent indicated that changes had boen made in hunch menus to incorporate the Dietary Guidelines for Ameriams.

[^12]: 8 Chapter Three provides detrilod information on the mumber and types of food offered in NSLP meals during a typioal school week.

 9 Chapter Four provides deteribed information on the number and typee of food offered in SBP meale during a typioal school wolk

[^13]: 10 Students alweys have the option to bring food from home. This study did not colloct informition on food from homs; however, the SNDA-I study found thet 18% of students brought food from home.

[^14]: 12 Cafteria mesmens reported their total a la carve food sales for a typical weok (the target week for the menu survey). Reaponsen were suenderdized per 1,000 students besed on SFA directors' reports of totel student earollement in the sampled schoote.

[^15]: 13 This percestage in somowhat highor than but concinteat with resulte obtained in a nationelly representative survey of onfinain meongens cooducted by the GAO in SY 1995.96. That study found that 13 paroent of sohools offired branded frocte. The roceat School Food Purchese Strdy reportad that 40 perceat of school difticts used branded foods in SY 199697. Beceuse SNDA-II deta were collocied at the school hovel and SFPS deta were colloctod at the dhertet lovel, dirivet comperivons of the two stadies cannot be mede.

[^16]:
 schools and ligh rehooln in Appentixi.

 2 The CN Recutherimition Act of 1998 wived this roquirement through Sepmember 2003, for solool diatricts that obtein a wiver fitom thir Silice agmog.

[^17]: 6 Deta ea actual meen calorie and nutrient coatent of hunches, as aerved, are prevented in Erchibit A.1.
 7 This is in beeping with charscteriaties of the Americen diet, which typionlly provides soveral times the RDA for protein.

[^18]: 8 Results for all schools combined and for middle schools and high schools separately are shown in Appendix A.

[^19]: ${ }^{1}$ Includes Mexican-style entrees, paste-besed entrees and other minctures (e.g., Shepherd's pie, chili, quiche).
 ${ }^{2}$ Includes meat/fish/poultry that is breaded, fried and/or prepered with gravy or mayoonaise.
 ${ }^{3}$ Foods that do not contribute to satisfying the meal patterns for the traditional or enhanood food-besed menu planning syatems.
 Noter: See Exhibit E. 6 for a detailed listing of items included in each group.

[^20]: 1 Schools that are not using the traditional or enhanced food-based menu planning systems are not required to offer specific food items. Menus offered in these schools are generally consistent with the basic elements of the food-based meal pattern, however, so the basic meal component categories still provide a useful framework for describing SBP menus.

[^21]: 2 Reported percentrges were derived by summing figures for all types of flavored milk. Although percentages for individual minor food groups are generally not mutually exclusive, in this case they are because schools rarely offer more than one type of flavored milk.

[^22]: 3 Data on actual energy and nutrient content of breakfinta served are presented in Exhibit B.1.

[^23]: 4 Because another USDA-sponsored atudy was collecting detailed information on SMI implementation at the same time as SNDA-II data were collected, detailed questions about implementation of the various menu planning options were not collected in this study.

[^24]: ${ }^{1}$ Low-fitiadefined as no more than 30 percent of total calories from fint. Schools in this group met the SBP standard for percentage of calories from fint. All schools not included in the low-fit group are included in the higher-int group.
 ${ }^{2}$ NRC recommendetion, not SBP standerd.

[^25]: 1 For nutrient analysis, both studies essentially used USDA's standard reference nutrient database (the mont current version available at eech point in time), supplemented with informetion on commercin products used in school food service. In SNDA-L, the Nutrition Deta Syatem (NDS) software was used to enter data on foods and portions offered. However, for purposes of the nutrient analyais, NDS entries were linked to items in USDA's standerd reference database. For commercial products not in the database, a special NDS recipe calculation function was used, in conjunction with food product nutrition informetion, to create nutrient values. The nutrient data bese used in SNDA-II (the third release of the Child Nutrition deta base (CN-3) developed for NSNP softwere) was developed using USDA's standard reference detabese. Commercial products not included in the database were added using product nutrition information.

 2 Another poieatial source of difierenoes between the two data sets is change over time in database values for the same food($($) because of improved or enhanced analytic techniques (e.g., incorporation of updatod data on nutrient X or nutrient Y. Given the limited and besic set of nutrients examined in this analysis, however, it is unlikoly that this souroe contributed subbtentially to the diffierences obeerved.

[^26]: 3 As described in Chapter Five and Appendix E, an alternative approech to the unweighted analyais was also implemented for NSMP/ANSMP sohools, which do not follow a food-based meal pettern. Beceuse incorporation of these alternative data had no material effect on the outcome of the analysis, a decision was made to use the unweighted analyis modeled after SNDA-I for all schoola. This not only simplifies presentation and discussion of the dsta, it maintains comparability between the two studies.

[^27]: ${ }^{1}$ NRC recommendation, not NSLP standard.

[^28]: Public reporting burden of this collection of information is estimated to average 19 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the date needed, and completing and reviewing the collection of infermation. An agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a currently valid OMB control number. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to: Department Clearance Officer, OIRM, AG Box 7630, Washington, DC 20250.

[^29]: 1 Elementary school: lowest grade loss than fourth or lowest grade leas than mich and highest grade lows then eighth. Middle mohooks not eivmentry schools and lowest grade lose than tenth. High schools not elementary or middle schools or highest grade equal twatath.

[^30]: * Not as meat alternate.

[^31]: 1 Some schools then included preschool or kindergarten reported serving meals only to students in first grade or higher.
 2 RDAs for 11-14-year-olds and 15-18-year-olds specify separate standards for males and females. The NSMP analysis uses an average of the male and female standards.

[^32]: 3 CN guidence, issued after the time the NUTRIKIDS software was modified for use in this study, suggests use of a base of 900 (which is divisible by all numbers up to 6 , as well as by 8,9 , and 10) to minimize the need for rounding

[^33]: ${ }^{1}$ Previous research suggests that most of these young secondary individuals are foster children. For determining WIC eligibility, a foster child who is the legal responsibility of a court or state welfare agency is a family of one individual. Although the CPS does not collect income data for a secondary individual under age 15 , it is likely that such a person has little, if any, income.

[^34]: ${ }^{2}$ Estimating the numbers of WIC eligibles and, implicitly, WIC participation rates using the infant mortality rate (IMR), for example, as a predictor would have "built in" a relationship between WIC participation and the IMR, therefore biasing analyses of the effectiveness of WIC in reducing infant deaths.
 ${ }^{3}$ The residual for a state is the difference between the sample estimate and the regression prediction. Our best model tended to produce smaller residuals than did alternative models.

[^35]: ${ }^{4}$ This equation does not express a causal relationship. It does not imply that more FSP participants cause more WIC eligibles. Rather the equation implies only a statistical association: states with more FSP participants typically hate more WIC eligibles than states with fewer FSP participants. For this reason, predictors are often called "symptomatic indicators." They are symptomatic of differences among states in conditions associated with having more or fewer WIC eligibles.
 ${ }^{5}$ As shown in the next step, we do not have to calculate regression estimates as a separate step, although we do have to select a best regression model before we can calculate shrinkage estimates.
 ${ }^{6}$ The fourth column of numbers in Table A. 1 is Y_{s}, while D can be obtained from the last column in that table.

[^36]: ${ }^{7}$ Except for a column of ones to allow for an intercept in the regression model, Table A. 6 is the \mathbf{X} matrix.

[^37]: ${ }^{10}$ The standard errors were calculated by taking the square roots of the diagonal elements of V_{c}.

[^38]: ${ }^{11}$ As in Step 3, we assumed that the sampling error associated with a census estimate is negligible. Therefore, the standard error for the shrinkage estimate of the proportion eligible is the same as the standard error for the shrinkage estimate of the change in the proportion eligible. Our estimate of $e_{c i}$ does not take account of the correlation between r_{c} and our estimate of the proportion eligible. Instead, r_{c} is treated as a constant.
 ${ }^{12}$ Beginning with the sample estimates of the percentage eligible in 1992, we used the independent population estimates of infants and children to obtain preliminary sample estimates of the numbers eligible and, then, controlled those preliminary estimates to the national totals. The preliminary estimates summed to $1,746,319$ infants and $6,754,737$ children.

